

60612		
ROLL No.		

TEST BOOKLET No.

345

TEST FOR POST GRADUATE PROGRAMMES

ELECTRONIC SCIENCE

Time: 2 Hours Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

- 1. You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number, Test Code, and Test Subject in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with a Ball Point Pen.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by a Ball Point Pen corresponding to the correct response as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- 7. Please do your rough work only on the space provided for it at the end of this Test Booklet.
- 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of such unforeseen happenings the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.

1

ELECTRONIC SCIENCE

- 1. In an atom, in a transition from one stationary state corresponding to an energy w_2 to another stationary state, with an associated energy $w_1(w_1 < w_2)$ the frequency of the radiant energy is (with h=Planck's constant)
 - $(A) f = \frac{w_1 + w_2}{h}$

 $(B) f = \frac{w_1 - w_2}{h}$

(C) $\frac{w_1 \ w_2}{h}$

- (D) $w_1 / w_2 h$
- 2. A piece of copper and another of germanium are cooled from room temperature to 100°K. The resistance of
 - (A) each of them increases
 - (B) each of them decreases
 - (C) copper decreases and germanium increases
 - (D) copper increases and germanium decreases
- 3. What is the energy gap between bottom of conduction band and discrete impurity levels in the case of n type Ge?
 - (A) 0.001 ev

(B) 0.005 ev

(C) 0.075 ev

- (D) 0.01 ev
- 4. In tunnel diode impurity concentration is of the order of
 - (A) 1 part in 10^3

(B) 1 part in 10^5

(C) 1 part in 10^6

(D) 1 part in 10^8

5. In a bipolar junction transistor emitter efficiency (η_e) is defined as

- (A) $\frac{\text{current of injected carriers at } J_E}{\text{current of injected carriers at } J_C}$
- (B) $\frac{\text{current of injected carriers at } J_{C}}{\text{current gain of the transistor}}$
- (C) $\frac{\text{current of injected carriers at } J_{E}}{\text{total emitter current}}$
- (D) $\frac{\text{current of injected carriers at J}_{\text{C}}}{\text{total base current}}$
- 6. $S = \frac{B+1}{1+BR_C/(R_C+R_B)}$ is the expression for stability factor, with respect to I_{co}, of
 - (A) fixed bias circuit
 - (B) collector to base bias circuit
 - (C) emitter bias circuit
 - (D) darlingtor emitter follower circuit
- 7. In a JFET the transfer characteristics (relationships between I_{DS} and V_{GS}) is given by

(A)
$$I_{DS} = I_{DSS} \left(I - \frac{V_{GS}}{V_p} \right)^2$$

(B)
$$I_{DS} = \frac{I_{DSS}}{\sqrt{2}} \left(I - \frac{V_{GS}}{V_p} \right)^{3/2}$$

(C)
$$I_{DS} = \sqrt{2} I_{DSS} \left(I - \frac{V_{GS}}{V_p} \right)^2$$

(D)
$$I_{DS} = I_{DSS} \left(I - \frac{V_{GS}}{V_p} \right)^{3/2}$$

8.	Which of the following are true for JFET'S advantages?			lvantages?
	_	input impedance offset voltage noise		
	(B) (C)	1 and 2 only are correct 2 and 3 only are correct 1 and 3 only are correct 1,2 and 3 are correct		
9.	Noise f	igure is equal to		
	(A)	output signal - to - noise po		_
	(B)	input signal - to - noise pow output signal - to - noise pow		-
	(C)	output noise power input noise power		
	(D)	output noise power output signal power		
10.		ideal Tran conductance ample (r_o) will be respectively	ifier the	input resistance (r_i) and output
	(A) (C)	0 and 0 0 and ∞	(B) (D)	∞ and 0 ∞ and ∞
11.	With cu	errent shunt feedback, input re	sistance	(r_i) and output resistance (r_o)
	(A) (C)	both increase r_i decreases, r_o increases	(B) (D)	both decrease r_i increases, r_o decreases

12. A blocking oscillator							
	(B) (C)	produces very sharp and narrow generates sinusoidal waves is an amplifier with negative fe is a triggered oscillator	-				
13.		The upper limit of the theoretical efficiencies for a transformer coupled power amplifier is					
	(A)	25%	(B)	50%			
		66.7%	(D)				
14.	Maximum energy of electrons, liberated photo electrically, depends on						
		incident light intensity frequency of the incident light					
15.	The maximum wavelength of incident light beyond which photo electric emission cannot take place is called						
		short-wavelength limit	` '	ultimate wavelength			
	(C)	critical wavelength	(D)	threshold wavelength			
16.	Across	Across an open-circuited S_i $p-n$ junction the value of photo voltaic emf i					
	(in volt	s)					
	(A)	0.1	(B)	0.3			
	(C)	0.4	(D)	0.5			

17. For a rectifier % regulation is defined as

(A)
$$\frac{V \text{ no load} - V \text{ full load}}{V \text{ full load}} \times 100\%$$

(B)
$$\frac{V \text{ no load} - V \text{ full load}}{V \text{ no load}} \times 100\%$$

(C)
$$\frac{V \text{ full load}}{V \text{ no load}} \times 100\%$$

(D)
$$\frac{V \text{ no load} - V \text{ full load}}{V \text{ no load} + V \text{ full load}} \times 100\%$$

- 18. The 2s complement numbers 1111(equal to decimal-1) and 1110 (equal to decimal-2) when added give the 2s complement number
 - (A) 11101

(B) 01110

(C) 1101

(D) 1110

19.

Inp	Output	
A	В	
0	0	1
0	1	0
1	0	0
1	1	1

The truth table shown is for

(A) XOR gate

(B) NAND gate

(C) NOR gate

- (D) XNOR gate
- 20. The simplified form of Boolean expression $\overline{A} + A\overline{B}$ is
 - (A) A+B

(B) $\bar{A} + \bar{B}$

(C) $\overline{B} + A$

(D) $A + \overline{B}$

21. LED generates light. What does LCD do?					
	(A)	Generates li	ght		
	(B)				
	` '	Absorbs ligh			
	` '	_	ermal energy ir	nto light	
22.	IC chip	7475 is a			
	(A)	synchronous	counter	(B)	quad NAND gate
		4 bit transpa		(D)	
23.	Which	one of the foll	lowing IC chip	s is a shift	register IC?
	(A)	74194		(B)	74HC85
		74192		(D)	
24.	The ma		ns of an eleme	entary digi	tal voltmeter are A/D converter,
	(A)	encoder		(B)	counter
	(C)			(D)	comparator
25.	The ad	vantage of su	ccessive appr	oximation	type A/D converter over ramp
		D converter is			
	(A)	it consumes	less power		
	(B)	it has much	lower conversi	on time	
	(C)	it has better	accuracy		
	(D)	it has higher	resolution	*	

26.

This is the logic symbol for

- (A) inverter
- (C) 3 state buffer

- (B) multiplexer
- (D) attenuator

27. NVSRM is

- (A) Negative Voltage Static RAM
- (B) Non Volatile Static RAM
- (C) Non Volatile Synchronous RAM
- (D) Negative Voltage Switched RAM

28.

What circuit is this?

- (A) Half adder/ Half subtractor
- (B) Full adder

(C) Comparator

(D) Multiplier

29.

The circuit shown converts an RS flip-flop into a

- (A) T flip-flop
- (B) D flip-flop
- (C) JK flip-flop
- (D) JK master-slave flip-flop
- 30. Sensitivity S of a voltmeter in ohms/volt is equal to

$$(A) \quad \frac{1}{I_{FSD}}$$

(B)
$$\frac{1}{I_{AVG}}$$

(C)
$$\frac{V_{FSD}}{V_{MIN}} I_{FSD}$$

(D) Full scale internal resistance
$$V_{AVG}$$

where FSD = Full scale deflection

- 31. Which one of the following AC Bridges is used for frequency measurement?
 - (A) Hayes bridge

(B) Maxwell's bridge

(C) Schering bridge

- (D) Wien bridge
- 32. What does a vector voltmeter measure?
 - (A) Amplitude of a signal at two points in a circuit and simultaneously measure the phase differences between the two nodes and a reference point.
 - (B) Measures phase of signal at each node in the circuit.
 - (C) Measures RMS amplitude at the source node.
 - (D) Measures peak amplitude at the source node

33.	In a cat	thode ray tube with a phosphor of	of type	P ₄ the phosphorescence colour is	
	(A)	yellow-green purple-blue	(B)	white yellow	
34.	Duty cy	ycle of a pulse waveform is defin	ned to	be	
	(A)	pulse amplitude period	(B)	pulse width frequency	
	(C)	pulse width period	(D)	pulse amplitude frequency	
35.	Instrum in a con	ent to measure relative amplit	udes	of single frequency components	
	(A) (C)	frequency meter harmonic distortion analyzer		wave analyser neterodyne converter	
36.	For an o	optical fibre (with $n_1 = refractive$ $n_2 = refractive$	index	of core	
	n_2 = refractive index of cladding) critical angle, θ_c , the toal internal reflection is equal to				
	(A)	$Sin^{-1} \frac{n_2}{n_1}$ $Cos^{-1} \frac{n_2}{n_1}$	(B)	$Tan^{-1} \frac{n_2}{n_1}$ $Cot^{-1} \frac{n_2}{n_1}$	
	(C)	$Cos^{-1} \frac{n_2}{n_1}$	(D)	$Cot^{-1} \frac{n_2}{n_1}$	
37.	For a stra	ain gauge, the change in resistan	ice per	unit change in length is called	
		resistance ratio gauge factor		threshold factor strain factor	
38.	Rectifier	type instruments use			

(A) PMMC movement with a rectifier

(C) PMMC movement with a converter

(B) Electrodynamometer movement with a rectifier

(D) Electrodynamometer movement with a converter

39.

Under balance condition the value of Rx would be

(A)
$$35 \Omega$$

(B)
$$70 \Omega$$

(C)
$$105 \Omega$$

(D)
$$140 \Omega$$

For a standard cell, output voltage change with temperature is of the order 40.

10

(A)
$$-1 \frac{\mu v}{O_c}$$

(B)
$$-15^{\mu\nu}/O_{\odot}$$

(C)
$$-40 \frac{\mu \text{V}}{\text{O}_c}$$

(B)
$$-15 \frac{\mu \text{V}}{\text{O}_c}$$

(D) $-60 \frac{\mu \text{V}}{\text{O}_c}$

For a uniform transmission line the phase constant β is equal to 41.

(A)
$$\frac{1}{\omega\sqrt{LC}}$$

(B)
$$\frac{1}{2 \pi \omega} \sqrt{\frac{L}{C}}$$

(C)
$$\omega\sqrt{LC}$$

(D)
$$2\pi\omega\sqrt{\frac{L}{C}}$$

Attenuation loss (in dB) in a transmission line is defined as 42.

(A)
$$10 \log \frac{\text{input energy}}{\text{transmitter energy to the load}}$$

(C)
$$10 \log \frac{\text{transmitted energy to the load}}{\text{input energy}}$$

(D)
$$10 \log \frac{\text{reflected energy to the load}}{\text{transmitted energy to the load}}$$

- 43. Which one of the following boundary condition is incorrect for a wave propagation?
 - (A) Normal components of magnetic flux density are continuous across the boundary.
 - (B) Tangential components of electric field intensity are continuous across the boundary.
 - (C) Normal components of electric flux density are continuous across the boundary.
 - (D) Tangential components of magnetic flux density are discontinuous at the boundary by the surface charge density, J.
- 44. Specific resistance of ferrites is of the order of
 - (A) $10^7 10^8 \Omega m$

(B) $10^9 - 10^{10} \Omega m$

(C) $10^{11} - 10^{12} \Omega m$

- (D) $10^{12} 10^{13} \Omega m$
- 45. Why is a coaxial line a broadband device?
 - (A) Its losses are negligible
 - (B) It propagates in TEM mode which has no cut-off frequency
 - (C) It uses a hybrid dielectric
 - (D) It has low resistivity

46.
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0011 \\ 00 - 11 \\ 1 - 100 \\ 1100 \end{bmatrix}$$

This is the s matrix of

- (A) directional coupler
- (B) 4 port circulator

(C) magic tee

- (D) 4 port hybrid junction
- 47. The three parameters which describe the performance of a microwave resonator are resonant frequency, input impedance and
 - (A) quality factor

(B) power rating

(C) attenuation

(D) return loss

4 8.	In reflex klystron frequency modulation is by					
	(A)	-	(B	•	sinusoidal wave	
	(C)	saw tooth wave	(D)	rectangular pulses	
19 .	Helix sl	low wave structure is used in				
	(A)	•	(B	-	klystron	
	(C)	reflex klystron	(D	')	traveling wave tube	
50.	In Magi	netron, mode separation is achi-	eved 1	by		
		strapping	•	•	reducing cavity aperture	
	(C)	using stronger magnetic filed	(D)	increasing the anode voltage	
51.	Avaland	che transit time diode is a p-n ji	unctio	n (diode with	
	(A)	lightly doped p and n regions	3			
	(B)			_		
	(C)					
	(D)	very wide p region and very	narro)W	n region	
52.	Sensitiv	vity of a receiver is its ability to	recei	ve		
	(A)	weak signals				
	(B)	signals over a wide frequencie	es ban	ıd		
	(C)					
	(D)	modulated signals				
53.	Single o	conversion superhetrodyne rece	ivers	are	e used	
	(A)	below 1 MHz only	(B)	be	tween 1 MHz and 5 MHz only	
	(C),	•	(D)	ab	ove 20 MHz	
54.	The output of a balanced modulator is a					
	(A)	single side band signal with ca	arrier			
	(B)	single side band suppressed ca			gnal	
	(C)	double side band signal with carrier				
	(D) double side band suppressed carrier signal					

- 55. To obtain frequency modulation using a phase modulator, the phase modulator must be
 - (A) followed by a differentiator
- (B) followed by an integer
- (C) proceded by an integrator
- (D) proceded by a differentiator
- 56. The circuit used to eliminate AM and AM noise from received FM signal before detection, is
 - (A) frequency detector
- (B) discriminator

(C) comparator

(D) amblitude limiter

57.

The circuit shown is that of a

(A) low pass filter

(B) high pass filter

(C) band pass filter

- (D) all pass filter
- 58. Delta modulation is a special case of
 - (A) PAM

(B) DPCM

(C) PPM

- (D) PWM
- 59. Aspect ratio for HDTV is
 - (A) 4:3

(B) 8:6

(C) 12:9

(D) 16:9

- 60. Height of geo-stationary orbit above the Earth is
 - (A) 28,786 km

(B) 32,786 km

(C) 35,786 km

- (D) 38,786 km
- 61. For an optical fibre the factor

$$\sqrt{\frac{{n_1}^2 - {n_2}^2}{n_0}}$$
 is

(A) figure of merit

- (B) numeric aperture
- (C) reflection factor
- (D) loss tangent
- 62. The statement "The total displacement or electric flux through any closed surface surrounding charges is equal to the amount of charge enclosed" is that of
 - (A) Coulomb's law

- Gauss's law (B)
- (C) divergence theorem
- Biot-savart law (D)
- Time varying form of equation of continuity is 63.

(A)
$$\Delta . j = -\frac{\partial p}{\partial t}$$

(B)
$$\Delta . E = -\frac{\partial \sigma}{\partial t}$$

(C)
$$\Delta X.j = -\frac{\partial p}{\partial t}$$

(B)
$$\Delta . E = -\frac{\partial \sigma}{\partial t}$$

(D) $\Delta XE = -\frac{\partial \sigma}{\partial t}$

- 64. In a region in which there is no charge density ∇ . E is equal to
 - (A) ∞

(B) 0

(C) finite, but large

- (D) non zero, but small
- 65. Under free space conditions the electromagnetic wave equations are

$$(A) \quad \nabla^2 E = \frac{1^\circ}{\mu \in \vec{E}}$$

$$\nabla^2 H = \frac{1}{\mu \in \vec{E}}$$

(B)
$$\nabla^2 E = \sqrt{\frac{\mu}{\epsilon}} \overleftrightarrow{E}$$

$$\nabla^2 H = \sqrt{\frac{M}{\epsilon}} \overleftrightarrow{E}$$

(C)
$$\nabla^2 E = \mu \in \overline{E}$$

$$\nabla^2 H = \mu \in \overleftarrow{E}$$

(D)
$$\nabla^2 E = \mu \in \overleftarrow{E}$$

$$\nabla^2 H = \mu \in$$

66.	The t	ime varying behaviour of electr in space is called	ic field	d strength vector with some fixed
) polarisation) Rayleigh distribution	(B) (D)	
67.	Durin	g day time the bulk of the ionisat	tion in	the ionosphere, is between
		0 km to 100 km 150 km to 1000km	(B) (D)	100 km to 150 km beyond 1000km
68.	The h	ighest frequency that can be a nission is called	eflecte	ed back for a given distance of
	(A) (C)	threshold frequency transmission frequency	(B) (D)	critical frequency maximum usable frequency
69.	Which type of antenna array has only main lobes and no side lobes?			
	(A) (C)	Log periodic directive array Binomial array		VHF array 4 element broad side array
70.	Lorent	z gauge condition is		
		$\nabla .A = -\mu \in \dot{V}$	(B)	$\nabla . E = 0$
	(C)	$\nabla . H = -\frac{\rho}{\epsilon}$	(D)	$\nabla .E = 0$ $\nabla .A = \frac{1}{\mu \in V}$
71.	Radix o	of a number system is		
	(B) (C)	the total number of numerals us the largest number in the system the average value of the number the indicator of most significant	n rs in th	ne system
72.	The He	xadecimal equivalent of binary 1	11101	11101100 is
	(A) (C)	2ED9 3DEC		3EDA 2DEC

73. Gray code for the number '4' is				
	(A) (C)	0100 0011	(B) (D)	0110 1010
74.	The A	registers in 8086 microprocesso	or are	
		AH and AL only AX and AL only		AX and AH only AX, AH and AL only
75.	When I	PUSH instruction is executed (in	n 8086 1	microprocessor) the SP register is
	(A) (C)	-		decremented by a count of 2 incremented by a count of 2
76.	8284 IC	C chip used with 8086 micropro	cessor i	s
	(A) (B) (C) (D)	programmable peripheral inte		smitter
77.		6, the register holding the base is called	e addres	ss of the final physical memory
	(A) (C)	index register segment register	(B) (D)	flag register pointing register
78.	For a si	gnal the operation $\int_{-\infty}^{\infty} f(\tau) \delta(t-1)$	$T)d\tau =$	f(T) is
	(A) (C)	time scaling time inversion		time shifting convolution

- 79. The idealised characteristic of a continuous delta function are given as
 - 1. signal must be infinitesimally narrow
 - 2. signal must occur at time zero
 - 3. signal must have zero energy
 - 4. signal pulse must have a unit area

Which of the above are correct?

- (A) 1 only
- (B) 2,3 and 4 only
- (C) 3 only
- (D) 1,2 and 4 only

80.

$$f(t) = \begin{cases} [1-|t|] & 1t1 = \le 1 \\ 0 & 1t1 = < 1 \end{cases}$$
 represent

- (A) unit signum function
- (B) unit sinc function
- (C) unit parabolic function
- (D) unit triangular function
- 81. Which one of the following system is non-causal?
 - (A) $y(t) = x(t)\sin(1+t)$
- (B) $y(t) = x(t^2)$

(C) $y(t) = \frac{d}{dt}x(t)$

- (D) y(t) = x(t-1)
- For amplitude modulation with modulation index = m and carrier power = P_c , 82. the total power of modulated signal is
 - (A) $P_t = P_c(1 + m/2)$

- (C) $P_t = P_c(1 + m^2/2)$
- (B) $P_t = P_c(1 + m^2)/2$ (D) $P_t = P_c(1 + m/\sqrt{2})$
- 83. A circuit which keeps the audio section of a receiver turned off in the absence of a received signal is called
 - (A) switch circuit

(B) squelch circuit

- (C) cut off circuit
- (D) audio turn off circuit

- 84. IC LM565 is a
 - (A) audio amplifier IC
 - (B) general purpose phase locked loop IC
 - (C) video amplifier IC
 - (D) timer IC
- 85. The entropy of a set of N message with probabilities P_1 and P_2 , is

(A)
$$H = \sum_{k=1}^{N} p_k \log p_k$$

(B)
$$H = \sum_{k=1}^{N-1} \frac{1}{p_k} \log p_k$$

(C)
$$H = \sum_{k=1}^{N} p_k \log \frac{1}{p_k}$$

(D)
$$H = \sum_{k=1}^{N-1} \frac{1}{p_k} \log \frac{1}{p_k}$$

- 86. The law/principle first enunciated by Heisenberg is
 - (A) Law of mass action
 - (B) Uncertainty principle
 - (C) Maximum power transfer principle
 - (D) Three halves power law
- 87. In an intrinsic semiconductor Fermi level is equal to
 - (A) $\frac{E_c + E_v}{2}$

- (B) $\frac{E_c E_v}{2}$
- (C) $\frac{E_c + E_v}{2} \frac{k_T}{2} \ln \frac{Nc}{Nv}$
- (D) $\frac{E_c E_v}{2} + \frac{k_T}{2} \ln \frac{Nc}{Nv}$
- 88. Recombination agent commonly used by semiconductor manufacturers is
 - (A) silver

(B) gold

(C) magnesium

(D) selenium

89.	Volt equivalent of temperature (V_T) is equal to			0		
	(A)		(B)	T/550		
	(C)	T/282	(D)	T/114		
90.	In a pn	junction diode the storage time	e is			
	(A)	time for the stored majority of	harge to	reduce to zero		
	(B)					
	(C)	time for output pulse to appea	ar after a	in input pulse is applied		
	(D)	time for minority and majorit				
91.	In a pn	In a pn junction diode effective width of depletion layer is of the order of				
	(A)	1 micron	(B)	5 micron		
	(C)	15 micron	(D)	95 micron		
92.	In bipo	lar junction transistor, the ratio	•			
	injected	I carrier current reaching J_C	is calle			
	injected	carrier current reaching J_E	is calle	u		
	(A)	base efficiency	(B)	emitter attenuation		
	(C)		(D)	base transport factor		
93.	Ebers-N	Moll model for bipolar junction	transist	ors has		
	(A)	two diodes connected in serie	s with a	voltage source		
	(B)					
	(C)					
	(D)	three diodes in series with the with the other two diodes	he centre	e diode connected back-to-back		

The factor $\frac{1}{(1-V_{CR}/BV_{CRO})^n}$ is 94.

- (A) collector-base junction efficiency
- (B) attenuation in collector-base junction
- avalanche multiplication factor
- (D) breakdown threshold
- 95. Punch-through or reach-through in a bipolar junction transistor occurs due to
 - (A) excessive heat in the junctions
 - application of a square wave
 - (C) narrowing of transition region
 - (D) early effect
- 96. For bipolar junction transistor stabilization factor S is equal to
 - (A) $\frac{\partial I_C}{\partial V_{RF}}$

(B) $\frac{\partial I_c}{\partial I_{co}}$ (D) $\frac{\partial I_c}{\partial V_{CE}}$

- 97. The condition which must be satisfied to prevent thermal runaway is (with Pc=collector power, Tj=collector junction temperature and R_T= thermal resistance Rj=junction resistance)
 - (A) $\frac{\partial P_C}{\partial T_I} < \frac{1}{R_I}$

(B) $\frac{\partial P_C}{\partial T_I} < \frac{1}{R_T}$

(C) $\frac{\partial P_C}{\partial T_L} \ge \frac{1}{T_L}$

- (D) $\frac{\partial P_C}{\partial T_I} = \frac{1}{R_I}$
- 98. In bipolar junction transistor base spreading resistance is of the order of
 - (A) $300 500 \Omega$

(B) $50 - 70 \Omega$

(C) $1-5\Omega$

(D) $0.01 - 0.05 \Omega$

99.	The o	overall bandwidth of two identical voltage amplifier connected in cascade		
	(A) (B) (C) (D)	be better than that of single st be worse than that of single s	tage tage	stage. d worse if first stage gain is high
100.	f_T is the frequency at which			
	(A) (B) (C) (D)		al to co	ommon base current gain
101.	Galvar The ot	nometer damping is provided by her is	y two	mechanisms. One is mechanical.
	(A) (C)	electromagnetic viscous	(B) (D)	•
102.	The three methods for connecting unknown components to the test terminals of a Q meter are series connection, parallel connection and			
	(A) (C)	series – parallel connection direct connection	(B) (D)	1
103.	Lumpe	d parameter delay line consists o	of a nu	mber of cascaded symmetrical
	(A) (C)	RL networks RC networks	(B) (D)	LC networks series parallel RLC networks
104.	Integrat	ing principle in the digital meass	ureme	nt is the conversion of
	(A) (C)	voltage to frequency voltage to current		voltage to time current to voltage
105.	Rosette	strain gauge is used for measure	ment o	of strain
	(A) (C)	in more than one direction at low temperatures	(B) (D)	in large beams in underwater testing

106.	Measurement of force in terms of displacement of ferromagnetic core of a transformer is done by using				
	(A) (C)	magnetometer Hall effect probe	(B) (D)		
107.	Binary	equivalent of decimal 33 is			
	(A) (C)	11001 11000	(B) (D)		
108.	A+B.C	f = (A+B). (A+C) illustrates			
	• •	commutative rule associative rule	٠,	distributive rule additive rule	
109.	If a sig	nal can be represented by a set of	f equa	tions it is said to be	
	(A) (C)		(B) (D)		
110.	For an	energy signal the power content	is		
	(A) (C)		(B) (D)		
111.	74C00	series ICs belong to which logic	family	/ ?	
	(A) (C)	TTL CMOS	(B) (D)	DTL ECL	
112.	Which	one of the following is not an alp	hanur	neric code?	
	(A) (C)	ASCII Hollerith	(B) (D)	Baudot Excess-3 code	
113.	LCD which uses a polarising filter on the top and bottom of the display is called				
	(A) (C)	filtered LCD envelope LCD	(B) (D)	field effect LCD inverse LCD	

		23							
114.	Schmit	t trigger is used for							
	(A) (C)	switching multiplexing	(B) (D)	. •					
115.		nter in which counting is auto	matica	ally halted when a sequence is					
	(A) (C)			up/down counter self – stopping counter					
116.	The cou	unting sequence for the normal 7	4HC3	93 IC is					
		000 through 111 00000 through 1001		0000 through 1111 000 through 101					
117.	An exa	An example of 4 bit bidirectional universal shift register IC is							
	` '	74194 4511	(B) (D)	74HC 164 40818					
118.		n coding is optimal in the cas	e who	ere all symbol probabilities are					
	(A) (C)		(B) (D)	0.667 0.25					
119.	Amoun	t of information in a message with	h prol	oability P is					
	(A) (C)	log ₁₀ P log ₁₀ 1/ P	(B) (D)	log 2 1/ P log 2 P					
120.	General	ly optical fibre systems operate	with w	vavelengths in the range					
	(A) (C)	0.1 to 0.3 μm 0.8 to 1.6 μm	(B) (D)	0.4 to 0.7 μm 1.7 to 2 μm					
121.	A step -	- function is an example of							

(B) harmonic function (D) distorted function

(A) singularity function(C) imaginary function

122.	In a computer, an area of memory that holds a sequence of CPU instructions is called								
	(A)	Cache memory	(B)	code memory					
		internal memory	(D)	-					
	, ,	•	` '	•					
123.	In 8086	8086 microprocessor SI and DI register are used as							
	(A)	8 bit registers	(B)	4 bit registers					
	, ,	16 bit registers	(D)	C					
124.	In 8086	BIU stands for	` ,	ū					
	(4)	have intended as wells	(D)	1					
	(A) (C)	bus interface unit bus interrupt unit	(B) (D)	binary Information unit binary interrupt unit					
	(C)	ous interrupt unit	(D)	omary interrupt unit					
125.	The 3 t	ypes of jump ranges in 8086 are							
	(A)	short, long, longer	(B)	short, near, far					
	(C)		(D)						
126.	How many interrupt types are there in 8086?								
	(A)	8	(B)	16					
	(C)		(D)	256					
127.	For 808	6 AAA. AAS. AAD and AAM a	` ,						
	(4)	data movement instructions	(D)	:					
	(A) (C)			interrupt instructions rotation instructions					
	(0)	About based histraction	(D)	Totation instructions					
128.	MOVS is a								
	(A)	string move instruction	(B	s) secondary move instruction					
	(C)	supplementary move instruction	•	· •					
129.	Full for	m of REP instruction, for 8086, i	s						
	(A)	Resume segment operation	(B)	Repeat string operation					
	(C)	Repeat store operation	(D)	Resume store operation					
	(-)	1	` '						

130.	'FAT'	in computer terminology is					
		File Assignment Table Flag Assignment Table	(B) (D)				
131.	What i	s a file handle?					
		•	ers file ntifies	e contents a open file			
132.	8 bit ex	sternal data bus version of 8086 i	is				
	(A) (C)	8086 A 8088	(B) (D)				
133.	In max 8088 is	imum operational mode the ad	ldition	al bus control chip required for			
	(A) (C)	8255 8284	(B) (D)	8288 8250			
134.	In Manchester code binary 1 is coded as transaction from						
	` '	0 to 1 +A to -A	` '	1 to 0 -A to +A			
135.	The RM	IS thermal noise current is equal	to				
		$I^2n=4\Re TB_n$		$I^2n = 4G\Re TB_n$			
	(C)	$I^2 n = 4\Re T / B_n$	(D)	$I^2 n = 4G\Re T / B_n$			
136.	Below idensity noise is	of which increases as the frequency	npone iencie	nt of noise appears, the spectral s decreases. This component of			
	(A) (C)	flicker noise random noise	(B) (D)	low frequencies noise partition noise			

137. Frits formula for noise factor f is

(A)
$$F = F_1 + \frac{F_2 + 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$
 (B) $F = F_1 + \frac{F_2}{G_1} + \frac{F_3}{G_2} + \dots$

(B)
$$F = F_1 + \frac{F_2}{G_1} + \frac{F_3}{G_2} + \frac{F_3}{G_2}$$

(C)
$$F = F_1 + \frac{F_1 + F_2}{G_1} + \frac{F_2 + F_3}{G_2} + \dots$$
 (D) $F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$

26

(D)
$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

- Clapp oscillator is a modified version of 138.
 - (A) Hartley oscillator
- (B) Wien bridge oscillator
- (C) Colpitts oscillator
- (D) Phase shift oscillator
- 139. Doubly balanced diode ring modulator rejects
 - (A) the carrier only
 - one of the sidebands only
 - (C) modulating signal only
 - (D) both the carrier and the modulating signals
- 140. In ISB, transmission multiplexing technique used is
 - (A) TDM

(B) FDM

(C) CDM

- (D) modified TDM
- The ridge in a ridge waveguide 141.
 - (A) increases the capacitance between the wide walls
 - decreases the capacitance between the wide walls (B)
 - increases the capacitance between the narrow walls
 - decreases the capacitance between the narrow walls
- For a transmission line $10 \log \frac{(s+1)^2}{4s}$ is the 142.
 - (A) transmission loss
- (B) return loss

(C) reflection loss

(D) insertion loss

143.	In a reflex klystron with beam coupling coefficient	· ·	• • • •
	V	17	

(4)	R log	V_1
(A)	$\beta_i \log$	V_0

(B) $\beta_1 \frac{V_1}{V_0}$

(C)
$$\beta_1 \log \frac{V_0}{V_1}$$

(D) $\beta_1 \log V_1 V_0$

144.	Double minimum method is used for measurement of VSWR	in a microwave
	transmission line when VSWR is	

(A) < 5

(B) between 5 and 15

(C) <20

(D) >20

145.	Which	one	of	the	following	is	not	a	method	for	microwave	frequencies
	measur	emen	ıt?									-

(A) Slotted line method

(B) Down conversion method

(C) Reflect meter method

(D) Cavity perturbation method

146.	Trapefoidal patterns are used for observing	g characteristics of AM
	transmitters	

(A) tuning

(B) power

(C) modulation

(D) radiation

147. In a receiver, noise temperature is equal to

(A) $\frac{n}{kt}$

(B) NKB

(C) $\frac{2\pi n}{kb}$

(D) $2\pi nkb$

148. Which class of operation is normally employed in AM transmitters?

(A) Class A

(B) Class B

(C) Class C

(D) Class AB

28

149. With Δ f = frequency derivation and f_m = modulating signal frequency modulation index for FM is equal to

(A) $\Delta f.f_m$

(B) $\Delta f / f_m$

(C) $f_m/\Delta f$

(D) $(f_m - \Delta f)/f_m$

150. Which one of the following is not a FM detector circuit?

- (A) Balance slop detector
- (B) Foster Seely discriminator

(C) Ratio detector

(D) Envelop detector
