ENGINEERING SCIENCE

1. Match the application to approximate numerical method.

Applications

Numerical Method

P1: Numerical Integration

M1: Newton-Raphson Method

P2: Solution to a transcendental equation

M2: Runge-Ku 'ta Method

P3: Solution to a system of linear equations

M. Simpson's $\frac{3}{3}$ rule

P4: Solution to a differential equation

M4: Gauss Elimination Method

- (A) P1-M3, P2-M2, P3-M4, P4-M1
- (B) P1-M3, P2-M1, P3,-M4, P4-M2
- (C) P1-M4, P2-M1, P3-M3, P4-M2
- (D) P1-M2, P2-M1, P3-M3, P4-M4
- 2. It is known that two roots of the non linear equation $x^3 6x^2 + 11x 6 = 0$ are 1 and 3. The third root will be
 - (A) *j*
 - (B) i
 - (C) 2
 - (D, 4
- 3. In the trapezoid value for numerical integration of a function, the nature of approximation used for the function in each interval is
 - (A) co. stant
 - (3) Trear
 - (C) parabolic
 - (D) cubic

4. Newton-Raphson formula to find the roots of an equation f(x) = 0 is given by

(A)
$$X_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(B)
$$X_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$

(C)
$$X_{n+1} = \frac{f(x_n)}{x_n f'(x_n)}$$

(D)
$$X_{n+1} = \frac{x_n f(x_n)}{f'(x_n)}$$

If $A - 2B = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$ and $2A - 3B = \begin{bmatrix} -2 & 2 \\ -2 & -3 \end{bmatrix}$, then R is equal to

(A)
$$\begin{bmatrix} 6 & -4 \\ -3 & 3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -4 & 0 \\ 9 & -3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix}$$

- 6. The inverse of the matrix
 - (A) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
 - (B) $\begin{bmatrix} -0.2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -0.5 \end{bmatrix}$
 - (C) $\begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}$
 - (D) $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
- 7. If the variance c f data is V, C and S standard deviation is_
 - (A, \sqrt{V})
 - (B) $\pm \sqrt{V}$
 - (C) $-\sqrt{V}$
 - V^2
- 8. The following have the solution 4
 - (A) x = 1, y = 2
 - (B) x = y = 1
 - (C) x = y = 2

(D) None of the above

$$\begin{bmatrix} 6 & -8 & 1 & 1 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 4 & 8 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- 9. The determinant of the matrix
 - (A) 11
 - (B) -48
 - (C)
 - (D) -24

- 10. The rank of the matrix give, below is
 - (A) 3
 - (B) 1
 - (C) 2
 - (D) 4
- 11. Two trains A and Γ start from stations X and Y towards each other. B leaves station Y half an hour af r train A leaves station X. Two hours after train A has started, the

distance between trains A and B is $\overline{30}$ of the distance between stations X and Y. How much three would it take each train (A and B) to cover the distance X to Y, if train A reaches harf an hour later to its destination as compared to B?

- (A 8 hrs, 6 hrs
- (B) 5 hrs, 4 hrs
- (C) 10 hrs, 9 hrs
- (D) 9 hrs, 8 hrs
- 12. The study of interactions between living organisms and environment is called as
 - (A) Ecosystem
 - (B) Ecology
 - (C) Phytogeography

13. Fossil fuels and metallic minerals are(A) Renewable resources	
(A) Demoviable recovered	
TAT Renewanie resources	
(B) Inexhaustible resources	
(C) Non-renewable resources	
(D) None of the above	
14. Extensive planting of trees to increase cover is called	\
(A) Afforestation	
(A) Afforestation(B) Agroforestation	
(C) Deforestation	
(D) Social forestry	
15. Harnessing of nuclear energy often causes	
(A) Air nollytion	
(A) Air pollution(B) Water pollution	
(C) Thermal pollution	
(D) Noise pollution	
	0
16. Which of the fallsing is a non-reaswable resource?)
(A) Cal	
(A) C 41 (B) Fore ts	
(C) Water	
(D) Wildlife	
17. An ecosystem co., ists of	
(A) green plants and animals	
(P) green plants and decomposers	
(C) p.oducers and consumers	
(D) green plants, animals decomposers and abiotic environment	

Most stable ecosystem is

(A) Forest(B) Desert(C) Ocean

(D) Mountain

18.

19.	In a food chain animals constitute the
	(A) First trophic level
	(B) Second trophic level
	(C) Intermediate trophic level
	(D) Ultimate trophic level
20.	New approach to conservation is the establishment of
	(A) Sanctuaries
	(B) Biosphere reserves
	(C) National parks
	(D) Reserve forests
21.	Acid rain is caused by increase in the atmost heric concentration of
	(A) Ozone and dust
15 ¹ /	(B) SO_2 and NO_2
	(C) SO ₃ and CO
	(D) CO ₂ and CO
22.	Fluoride pollution mainly affects
22.	Fluoride popul (** allay affects
	(A) K'dney
	(B) Brai.
	(C) Heart
	(D) Teeth
23.	Which of the four ving on inhalation dissolves in the blood haemoglobin more rapidly
	than oxygen.
	(2) Sughur dioxide
	(P) vzone
	(C) Carbon monoxide
	(D) Nitrous oxide
24.	Nitrogen oxide and hydrocarbons released by automobiles interact to form
	(A) Carbon monoxide
	(B) Sulphur dioxide
	(C) PAN
	(D) Aerosols
	(2) 11010000

	25.	Disease caused by eating fish inhabiting in mercury contaminated water is
		(A) Bright's disease
		(B) Minimata disease
		(C) Hashimoto disease
		(D) Osteosclerosis
	26.	Study of trends in human population growth and prediction of turne growth is called
		(A) Demography
		(B) Biography
		(C) Kalography
		(D) Psychology
		The state of the s
	27.	Dechlorination of water is achieved by adding
		(A) Sodium thiosulphate
(5)		(B) Sodium sulphate
		(C) Sodium hexamete _P 'osphate
		(D) Sodium bisulphate
		. 9
	28.	When the coefficient of rugosity is increased from 0.01 to 0.02, the gradient of a pipe of a
	20.	given diameter to carry the same 1 ow at the same velocity will be
		given diameter to carry the same in same velocity will be
		(A) increased by 4 times
		(B) increased by ∠ times
		(C) doors ad by 5 times
		decreased by vertimes
		(D) George sed by 4 times
	29.	Zero ner dness of water is achieved by
	2),	Zeto in alless of water is define ved by
		(A) Using lime soda process
		(B) Excess lime treatment
		(C) Ion exchange method
		(D) Using excess alum dosage
	30.	Uniformity coefficient of filter sand is given by
	•	- · · · · · · · · · · · · · · · · · · ·
		(A) D_{50}/D_5
		(B) D_{50}/D_{10}

d when
ation
se sand
here
a

- 3
 - (A) plenty of water is available in the stream 'n ali seasons
 - (B) excess of suspended and dissolved matter as present in the water
 - (C) there is a large variation in quantity or it is iver flow from tine to time
 - (D) the flow is uniform throughout the par but is insufficient
- Which one of the following is the purpose of providing a target tank in pipeline carrying water?
 - (A) To store water
 - To increase the pressure throughout the pipeline (B)
 - (C) To store overflowing water
 - (D) To prote the pipeline again. water hammer
- Water present in artesian aquifer is usually 34.
 - (A) at sub-atmosp, eric pressure
 - (B) at atmospheric pussure
 - (C) at 0.5 times the atmospheric pressure
 - (D) above the atmospheric pressure
- 35. It up methyl orange alkalinity of water equals or exceeds total hardness, all of the har iness is
 - (A) non-carbonate hardness
 - (B) carbonate hardness
 - (C) pseudo hardness
 - (D) negative non-carbonate haraness
- A commonly used hand pump is the 36.
 - (A) centrifugal pump
 - (B) reciprocating pump

	(C) rotary pump(D) axial flow pump
37.	The pathogens can be killed by
	(A) Nitrification
	(B) Lime-soda process
	(C) Oxidation
	(D) Chlorination
38.	Two reservoirs at different levels are connected by two paraller pipes of diameter and and d.
	The ratio of the flows in the two pipes (larger: smalle., is
	(A) $\sqrt{2}:1$
	(B) 2:1
, C	(B) 2.1
Y C.	(C) 4:1
Y	(D) $4\sqrt{2}:1$
39.	Which one of the following would contain water with the maximum amount of turbidity?
	(A) Lakes
	(A) Lakes (B) Grean
	(C) Rive ?
	(E) Wells
4.0	
40.	The ideal residual pressure at the farthest consumer's tap in a properly designed water
	distribution system is in the range of
	(A) $v = 96 \text{ tc } 0.20 \text{ N/mm}^2$
	(L) 0.2 to 0.25 N/mm ²
	(C) v.26 to 0.30 N/mm ²
	(D $0.31 \text{ to } 0.35 \text{ N/mm}^2$
	"O ₂
41.	The yield of a well depend upon
71.	The yield of a wen depend upon
	(A) Permeability of soil
	(B) Area of aquifer opening into the wells
	(C) Actual flow velocity
	(D) All of the above

CUSATION RIPERTONS CONTRIBUTION OF THE CONTRIB CUSATI COMMON ADMISSION THEST. 2019 CIJSAII COMMON ADMISSION FILISII. 2019

42.	Which of the following treatments reduce salinity of water?
72.	29
	1. Flash mixing and sedimentation
	2. Electro dialysis
	3. Reverse osmosis
	4. Freezing
	5. Filtration
	Colort council council de color de circo belono
	Select correct answer using the codes given below:
	(A) 1, 2, 3, 4 and 5
	(B) 2, 3 and 4
	(C) 1, 3 and 5
	(D) 1, 2 and 4
43.	A river is the source of water for water supp. y to a town. Its wate is very turbid and
, C	polluted. The correct sequence of step. for treating the river water would be
15°	(A) presedimentation precharingtion coagulation sedimentation nitration
	post-chlorination
	(B) coagulation sedime. tation post-chlorination
	(C) coagulation tin. rion sedimentation post-chlorination
	(D) sedimentation - post-chloriration
44.	Which of the fo'lowing determinations are NOT necessary for raw water from a lake for
77.	use as source of supply of water for boiler feed?
	use as source of supply of water for botter feed?
	1. Turbidity 2 Bacterial count 3. Iron 4. Hardness
	Select correct ans verusing the codes given below:
	$\begin{array}{c} \text{(A)} 1,2 \text{ and } 2 \\ \text{(B)} 1,2 \text{ and } 3 \end{array}$
	(B) 2 and 4
	(2) 1, 2 and 4
	(1) \angle , 3 and 4
45.	Which one of the following pairs is not correctly matched?
	The same of the sa
	(A) Check valve: To check water flow in all direction
	(B) Sluice valve: To control flow of water through pipe lines
	(C) Air valve: To release the accumulated air
	(D) Scour valve: To remove silt in a pipe line

	46.	Reciprocating pumps are suitable for
		(A) high discharge and low heads
		(B) low discharge and high heads
		(C) low discharge and low heads
		(D) high discharge and high heads
	47.	Which one of the following filters will produce water of higher a reteriological quality?
		(A) Slow sand tilter
		(B) Rapid sand filter
		(C) Pressure filter
		(D) Qual media filter
	48.	Which of the following are the comm in proclems associated with the operation of rapid
	\C	sand filter?
, (
15	7	1. Air binding
		2 Cracking of sand 'be 4s
		3. Bumping of filter beds
		4. Mud balls
		Select correct and using codes bylow
		(A) 1 and 2
		(B) $2 \text{ and } 3$
		(C) 2, 3 and 4
		(D) 1, 2, 3 and 4
	40	Consider the Selly ving valves in a water distribution gystems
	49.	Consider the following valves in a water distribution system:
		1. ci. ck valve
		2. pres. are reducing valve
		3 an relief valve
		4. Scour valve
		5. Sluice valve
		Which of the following work automatically?
		(A) 1, 3 and 4
		(B) 2, 4 and 5
		(C) 3, 4 and 5
		(D) 1, 2 and 3

- 50. Two long pipes in parallel are used to carry water between two reservoirs. The diameter of one pipe is twice that of the other. Both the pipes have the same value of friction factor. Neglect minor losses. What is the ratio of flow rates through the two pipes?
 - (A) 2.8
 - (B) 5.6
 - (C) 8
 - (D) 11.3
- 51. Which one of the following filters should be recommended for protected rural water supply project?
 - (A) pressure filter
 - (B) slow sand filter
 - (C) diatomaceous filter
 - (D) rapid sand filter
- 52. Match list I (type of pipe) with list ii (purpose)

	List	4	List II
a.	Siec pipe		House plumbing
b.	Cast iron pir e	2.	Hot water carrying
c	G.I.pipe	3	Distribution main
ä.	PVC pipe	4.	Pumping main

Cories:

- (A) a-4, b-1, -2, c-3
- (B) a-4, b-3, c-2, d-1
- (C) a-2, b i, 4, d-3
- (D) α -2, α -3, β -4, d-1
- 53. Which the of the following organisms is responsible for enteric fever?
 - (A) ECHO
 - (B) Salmonella typhi
 - (C) Entamoeba bistolytica
 - (D) Echinococcus

54. Which one of the following statements is correct?

If the specific gravity of a suspended particle is increased from 2 to 3, the settling velocity will,

- (A) not change
- (B) get doubled
- (C) get increased by 1-5 times
- (D) get increased by 2.25 times
- 55. Which one of the following is not a specific criterion for calculating surface overflow rate in sedimentation tank design?
 - (A) total quantity of water to be treated
 - (B) total surface area available in the way
 - (C) total length of the tank
 - (D) total depth of the tank
- 56. Pickup the treatment process that has maximum BOD emoval efficiency
 - (A) Waste stabilization pond
 - (B) Mechanically arrated lagoons
 - (C) Pasveer Tyr Oxidation Ditch
 - (D) Conventional treatment using Lickling filters
- 57. Tyle II settling in water truth that is defined as
 - (A) Settling of discrete particles in dilute suspensions
 - (B) Settling of florculent particles in dilute suspensions
 - (C) Settling of locculent particles in concentrated suspensions
 - (D) Settly g of particles in the form of sludge blanket
- 58. Two 16, intical centrifugal pumps are operated in parallel so as to deliver into a common delivery pipe. Speed for both is also identical. At what total discharge (Q) and total head (H) will the system operate as compared to discharge and head of each of the pump operated singly?
 - (A) Both total Q and total H would increase, each approximately by 50%
 - (B) Total Q would be approximately doubled, but H would remain the same
 - (C) Total H would be approximately doubled, but Q would remain the same
 - (D) Total H would be doubled, but Q would be approximately halved

59.	Which of the following is/are the characteristic(s) of coli form organism?
	1. Bacillus 2. Gram-negative 3. Ferments lactose 4. Spore forming
	(A) 1 alone (B) 1, 2 and 4 (C) 1, 2 and 3 (D) 2, 3 and 4
60.	The effective size (ES) of sand and its uniformity coefficient (UC) are usually specified parameters for sand filters. In slow sand filters as compared to rapid sand filters.
	 (A) ES is less but UC is more (B) ES is more but UC is less (C) Both ES and UC are more (D) Both ES and UC are less
61.	Circular sewers are economical up to a diameter
	(A) 1.5 m (B) 2.0 m (C) 2.5 m (D) 3.0 m
62.	The permissible pH value for public water supplies may range between
	(A) 5.5 to 8 (B) 5.5 to 6.0 (C) 7 to 2.5 (D) 8 5 to 10.5
63.	The units of velocity gradient (G) is
	(B) 5.5 to 6.0 (C) 7 to 8 5 (D) 8 5 to 10.5 The units of velocity gradient (G) is (A) meter/sec (B) kilo Watt/meter (C) meter/hr (D) per second
	SPICO

64.	. Which of the following is not a method of disinfection?		
	(A)	Ozonation	
	(B)	U.V. radiation	
	(C)	desalination	
	(D)	chlorination	
65.	Δ σες	plogical formation that may contain water but is incapable cotransmitting significant	
05.	_	ities is	
	quant		
	(A)	Aquitard	
	(B)	Aquifer	
	(C)	Aquiclude	
	(D)	Aquifuge	
	BILL		
66.	A mil	d steel pipe line 200 mm in diameter is carrying verter with a velocity of 1.2 m/s. If	
		on factor is 0.02, the head 1 ss per kilometer is ngth o. pipe line will be	
<i>'</i>			
	(A)	5.1 m	
	(B)	7.34 m	
	(C)	74.38 m	
	(D)	73.4 m	
67.	The h	ead 'oss ir a pipe of d'artur a, carrying water at a flow rate Q is h. If this pipe is	
	rep'ac	eed by another pine with diameter d/2, the increase in head loss will be	
	(A)	1000%	
	(B)	400%	
	(C)	800%	
	(D)	3200%	
68.	A ris	ra main is	
	(A)	pipe which carries water from overhead to different floors in a building	
	(B)	pipeline laid on rising gradient	
	(C)	pumping main which carries water from lower level to higher level	
	(D)	All of the above	

69.	Which of these is not a usual method of analysis of flow in water distribution networks?
	(A) Hardy cross
	(B) Newton-Raphson
	(C) Linear theory
	(D) Linear programming
70.	Self-purification of running streams may be due to
70.	Self purification of forming streams may be due to
	(A) coagulation, flocculation and sedimentation
	(B) dilution, sedimentation and oxidation
	(C) dilution, sedimentation and filtration
	(D) dilution, sedimentation and coagulation
71.	The temperature of sewage affect the
	(A) biological activity
S	(B) solubility of gases
	(C) viscosity of sewage
	(D) All of the above
72.	Under drainage some is provided in
	(A) Artivate sludge process
	(B) Slov, sand filters
	(C) Upflow filters
	(D) None of the acrove
73.	The multiplying Actor usually adopted to obtain maximum hourly demand of water from
73.	the average is ourly demand of water on the maximum day for the year is
	(A) 1.3 (B) 1.8
	(C) 2.0
	(D) 2.7
7.4	
74.	Effluent of septic tank need to be treated with
	(A) ASP
	(B) soak pit
	(C) sewage system
	(D) oxidation pond

	75.	The velocity of flow of water in a sedimentation tank is about
		(A) 5-10 cm/sec
		(B) 15-30 cm/sec
		(C) 15-30 cm/min
		(C) 15 30 cm/hr.
		(D) 13 30 CHI/III.
	76.	The process of disalination of water, which makes use of microp rous membrane is
		(A) Electro dialysis
		(B) Solar distillation
		(C) Freezing
		(D) Defluoridation
	77.	The hoop stress, σ developed in a pip of dia neter 'd' and wall thickness 't' due to
	11.	
		internal pressure 'p' is given by
	, , , , , , , , , , , , , , , , , , ,	$(\Lambda) = 2 - nd/2t$
1		(A) $? = pd/2t$ (B) $? = pt/2d$
		(B) $? = pt/2d$
		(C) $\sigma = pd/t$
		(D) $? = pt/d$
	78.	Activated carbon is used for
	70.	Tetrated care on to ased for
		(A) disinfection
		(E) removing hardn
		(C) removing odo, r
		(D) removing 'x rros' reness
		(65)
	79.	The cost iron water mains are
		ver much durable
		(P) capable of withstanding high pressures
		(C) liable to corrosion
		(D) cheaper
	90	The characteristics of fresh and gent's gaveage respectively, are
	80.	The characteristics of fresh and septic sewage respectively are
		(A) alkaline and acidic
		(B) acidic and alkaline
		(C) both acidic
		(D) both alkaline
	81.	The economical diameter of a pumping or rising main is the one which ensures

(A)	least cost of pipe		
(B)	least cost of pumping		
(C)	least cost of pipe and pumping together		
(D)	higher cost of pipe and least cost of pumping		
	,5		
Diluti	on factor 50 means		
(A)	2% diluted sample		
(B)	1% diluted sample		
(C)	4% diluted sample		
(D)	20% diluted sample		
Tha	enemical diameter of a nine through this codirectors of 0 5 owners is to be		
	conomical diameter of a pipe, through with a discharge of 0.25 cumec is to be		
passe	d is		
(A)	0.5 m		
(A) (B)	0.75 m		
	1.0 m		
(C) (D)	1.0 m 1.2 m		
(D)	1.2 111		
Alum	is a coagaiant which is found to be nose effective when range of pH value of water		
is			
15			
(A)	2 1. 4		
(B)	4 to o		
(C)	6.5 .0 8.5		
(D)	ö.5 to 10.5		
()	\mathcal{L}		
The se	ettling velocity of a spherical body, under laminar flow condition in water is given		
by			
(A)	^T acey's formula		
(E)	Darcy's law		
(C)	Hazen William's formula		
(D)	Stoke's law		

82.

84.

85.

	(A) 200 ppm (B) 150 ppm (C) 300 ppm (D) 50 ppm
87.	The presence of excess amount of nitrates in drinking water may cause a disease called
	(A) methemoglobinemia (B) fluorosis (C) dental carries in children (D) poliomyelitis
88.	The coagulant, which is very effective for treating . w pH water 1.
SAICO	(A) alum (B) chlorinated copperas (C) copperas (D) sodium aluminate
89.	The maximum permissible la vit for fluor 12 in drinking water is
	(A) 0.1 mg/l (B) 1.5 mg/l (C) 5 mg/l (D) 1t mg/l
90.	Dissolved impurities in water consist of
	(A) silt (B) iron (C) oacter'n (D) 1, ngi
91.	The most common cause of acidity in water is
	(A) hydrogen(B) oxygen(C) carbon dioxide(D) nitrogen
92.	The method of analysis of water distribution system most suitable for long and narrow pipes is

	(A) equivalent pipe method
	(B) hardy cross method
	(C) circle method
	(D) dead-end method
	AS ^Y
02	
93.	For plain sedimentation tanks, the detention time ranges form
	(A) 1 to 2 hours
	(A) 1 to 2 hours (B) 2 to 2.5 hours
	(C) 3 to 4 hours (D) 4 to 8 hours
	(D) 4 to 8 tibuts
94.	A pipe which is installed in the house drainage to preserve the water seal of trap is called
^((A) vent pipe
	(B) antisiphonage pipe
	(C) waste pipe
19th	(D) soil pipe
95.	The presence of calcium, phloride and magnesium chloride in water causes
75.	The presence of careful Moride and Mag. Estam emoride in water causes
	(A) colour
	(B) turbidity
	(C) ha dness
	(D) coag lotion
96.	A horizontal tuni constructed at shallow depth along the bank of a river to interrupt the
	ground water table is called
	453
	(A) infiltr. ion gallery
	(B) s_1 ring
	(C) can a
	(P) channel
97.	The chloride demand of a water sample was found to be 0.6 mg/litre. The amount of
71.	
	bleaching powder containing 30% chioride to be added to treat 1 litre of such a water
	sample is
	(A) 1.67 mg
	(A) 1.67 mg (B) 1.50 mg
	(B) 1.50 mg (C) 2 mg
	(C) 2 mg (D) 1.75 mg
	(D) 1.75 mg

CUSATION RIPERTONS CONTRIBUTION OF THE CONTRIB CUSATI COMMON ADMISSION THEST. 2019 CIJSAII COMMON ADMISSION FILISII. 2019

98.	Which of the following forms of chlorine has no disinfectant property?
	(A) Hypochlorous acid
	(B) Hypocholorite ion
	(C) Monochloranine
	(D) Tricloramine
99.	The suitable method for forecasting population for a large developed city is
	(A) arithmetical increase method
	(B) geometrical increase method
	(C) comparative method
	(D) incremental increase method
100.	Most of the weather phenomenon take place in the
	(A) stratosphere
	(B) mesosphere
	(C) troposphere
	(D) ionosphere
101.	The major quartity of rainfall in India is a
	(A) convectional precipitation
	(B) orog an inc precipitation
	(C) cyclonic frontal precipitation (D) cylonic non-1, ontal precipitation
	(D) Tyronic non-it that precipitation
102.	The percentage of otal quantity of water in the world that of saline is about
	(A) .'1%
	(2) 33,
	(C) C7%
	(D) 97%
103.	Evaporation from the surface of a reservoir may be reduced by sprinkling
	(A) methane
	(B) spirit
	(C) acetyl alcohol
	(D) nitric acid

104.	The 'starch-iodide' test is performed to identify
	(A) residual chlorine
	(B) residual iodine
	(C) residual starch
	(D) residual CO ₂
	(B) Testada es 2
105.	Copper sulphate is used to control in water
	150
	(A) algae
	(B) bacteria
	(C) silt
	(D) minerals
106	Oblamination of vector door not named
106.	Chlorination of water does not remov :
	(A) BOD
	(B) dissolving oxygen
	(C) organic matter
	(D) ammonia content
107.	Sunlight
	(A) reduces virbidity
	(B) increases dissolved oxyger
	(C) impedes the growth of algae
	(D) helps bacterial growth
108.	The device use a comeasure the odour of water is
	(A) Jickson's turbidimeter
	(?) the nometer
	(C) Lydrometer
	(D) osmoscope
100	The notice of the reight of a new idea and There and that of a class and filter is of the order of
109.	The ratio of the yield of a rapid sand Ther and that of a slow sand filter is of the order of
	(A) 15
	(B) 30
	(C) 20
	(D) 10

	(A)	steel
	(B)	cast iron
	(C)	copper
	(D)	reinforced cement concrete
		10,
111	Ear of	hostog compet nings the joint which is commonly you lie
111.	roi as	sbestos cement pipes the joint which is commonly use 1 is
	(A)	flanged joint
	(B)	ring-tite coupling or simplex joint
	(C)	spigot and socket joint
	(D)	screwed socket joint
	W.	
116	, m	
1.12		water supply to a house being provided with the vervice connection pipe connected he municipal water mains. The se vice connection comprises:
		1) Stop-cock 2) Chose neck 3) Ferrule 4) Water meter
	The c	orrect sequence or these connections is
	(A)	1,2,3,4
	(B)	3,1,2,4
	(C)	3,21,4
	(D);	1,2,4,2
112	A foo	t valve is no vide but the and of systian nine of a contributed symmeto provent
113.	A 100	t valve is provided at the end of suction pipe of a centrifugal pump to prevent
	(A)	water from eaving and emptying the pump casing
	(B)	back Now of lifted water into the pump
	(C)	s dder and full loading of motor
	(E)	ent ₁ y debris and sand into the pump
114	T .	
114.	Turbi	dity is measured on standard cobalt scale standard silica scale
	(A)	standard cobalt scale
	(B)	standard silica scale
	(C)	standard platinum scale
	(D)	platinum cobalt scale

The commonly used material for water supply pipes, which has the property of being

strong, not easily corroded, long life but heavy and brittle is

110.

115.	In disinfection which of the following forms of chlorine is most effective in killing the pathogenic bacteria?
	(A) Cl
	(A) Cl (B) OCl
	(C) NH_2Cl
	(D) HOCl
116.	Two primary air pollutants are
	(A) sulphur oxide and ozone(B) nitrogen oxide and peroxyacetylnitrate
	(C) Sulphur oxide and hydrocarbon
	(D) ozone and peroxyacetylnitrate
117	Two biodegradable components of municipal solid was a are
150	(A) plastics and wood (B) cardboard and glass
	(C) leather and tin cans
	(D) food wastes and guiden trimmings
118.	A coastal city produces municipal sonia waste (MSW) with high moisture content, high
	organic naterials, low calcrift, value and low inorganic materials. The recet effective
	and sustainable option for MSW management in the city is
	(A) compostir ?
	(B) dumping s > a
	(C) incinctation
	(D) 12nd.~11
119.	In the first stage of decomposition of organic matter is sewage, the product formed is
	(A, carbon dioxide
	(B) nitrates
	(C) nitrites (D) ammonia
	(D) ammonia
	(A) carbon dioxide (B) nitrates (C) nitrites (D) ammonia

120.	The hydraulic mean radius of a circular sewer of diameter D is given by
	(A) $\frac{D}{4}$
	(B) $\frac{D}{2}$
	(C) $\frac{D}{3}$
	(D) $\frac{D}{6}$
121.	If the dissolved oxygen concentration in a natural drainage falls to zero, it indicates the
, (zone of
	(A) recovery
15,	(B) active decomposition
	(C) degradation
	(D) reduction
122.	Air binding' may see ur in
	(A) Avrators
	(B) sludy digestion chambers
	(C) sewers
	(D) Eliers
123.	The cross-section of a sewer for both the combined and separate system is
	(A) virgula:
	(A) C Cular (A) sen rellintical
	(C) eag-shane
	(D) horse-shoe shape
	The cross-section of a sewer for both the combined and separate system is (A) circular (b) sen i-elliptical (C) egg-shape (D) horse-shoe shape
124.	The dissolved oxygen sag curve shows
	(A) dissolved oxygen deficit
	(B) BOD deficit
	(C) dissolved oxygen caturation
	(D) BOD

125.	The total volume of a primary settling tank is 2500 cubic metres and the rate of sewage flow is 24×10^6 litres/day. The detention time in the settling tank is
	(A) 2.5 hours (B) 2.4 hours (C) 1.25 hours (D) 1.04 hours
126.	If the water content of sludge is reduced from 98% to 97%, the volume of the rludge is reduced by
	(A) two-third (B) half (C) one-third (D) one-fourth
127.	From among the following sewa re treatment optio. s, the rargest land requirement for a given discharge will be for
	(A) anaerobic por J (B) trickling filter (C) oxidation ditch (D) oxidation pond
128.	The rainfall nyetograp's shows the variation in the
	(A) cumulative depth of rainfall with time (B) rainfall depth with area (C) rainfall intensity with time (D) rainfall intensity with cumulative depth of rainfall
129.	A car. Iment consists of 30% area with runoff coefficient 0.40 with the remaining 70% are with runoff coefficient 0.60. The equivalent runoff coefficient will be
	(A) 0.48 (B) 0.54 (C) 0.63 (D) 0.76

	130.	For proper slow mixing in the flocculator of a water treatment plant, the temporal mean velocity gradient, 'G' recommendable is the order of
		(A) 5 to 10s^{-1}
		(A) $3 \text{ to } 10 \text{ s}$ (B) $20 \text{ to } 80 \text{ s}^{-1}$
		(B) $20 \text{ to } 30 \text{ s}$ (C) $100 \text{ to } 200 \text{ s}^{-1}$
		(C) 100 to 200 s (D) $250 \text{ to } 350 \text{ s}^{-1}$
		(D) 230 to 330 5
	131.	A circular sewer of diameter 1 m carries storm water at 4 d oth of 0.75 m. The hydraulic
		radius is approximately
		$\begin{array}{ccc} \text{(A)} & 0.3 \text{ m} \\ \text{(B)} & 0.3 \text{ m} \end{array}$
		(B) 0.4 m
		(C) 0.5 m
		(D) 0.6 m
	$^{\prime}$ C	
. 6	132.	For fish habitat in a river, the maximum dissolved exygen acquired is
(2)		
C		$\begin{array}{ccc} \text{(A)} & 2 \text{ mg/L} \\ \text{(B)} & 4 \text{ mg/L} \end{array}$
		$\begin{array}{ccc} \text{(B)} & 4 \text{ mg/L} \\ \text{(C)} & 2 \text{ mg/L} \end{array}$
		(C) 8 mg/L
		(D) 10 mg/I
	133.	The least expensive and most saisable excreta disposal unit for rural areas would be the
		(A) soal. pit
		(B) Fit privy
		(C) leaching c is noo
		(D) septic nk
	134.	Fresh studge has moisture content of 99% and, after thickening, its moisture content is
	151.	
		To lace to 70%. The reduction in volume of studge is
		(A, 3%
		(B) 5%
		(C) 75%
		(D) 97%
		\sim \circ
		re luc 4 to 96%. The reduction in volume of sludge is (A, 3% (B) 5% (C) 75% (D) 97%

	135.	A sewage sludge has a water content of 99%. The concentration of suspended solids in the sludge is
		(A) 10 mg/l (B) 100 mg/l (C) 1000 mg/l (D) 10,000 mg/l
	136.	Aerosol is
	^((A) carbon particles of microscopic size (B) dispersion of small solid or liquid particler in gaseous media (C) finely divided particles of ash (D) diffused liquid particles
-	137	The sound pressure level for a jet plane in the ground with sound pressure of 2000 \mu bar should be
15		
C		(A) 60 decibel(B) 100 decibel
		(C) 140 decibel
		(D) 180 decibel
	138.	Which on of the following nt behaviours occurs when atmospheric inversion begins
		from the ground level and continues?
		(A) Looping
		(B) Fumigation
		(C) Coning (D) E ing
		(D) Fain. ng
	139.	Which one of the following pollutants or pairs of pollutants is formed due to
		photochemical reactions?
		(A) CO alone
		(B) O_3 and PAN
		(C) PAN and NH ₃
		 (A) CO alone (B) O₃ and PAN (C) PAN and NH₃ (D) NH₃ and CO

	140.	What type of noise can be abated by providing lining on walls and ceiling with sound
	1.0.	absorbing materials?
		absorbing materials:
		(A) Source noise
		(B) Reflection noise
		(C) Structural noise
		(D) Direct air-borne noise
	141.	The sewerage system originates from
		(A) house sewers
		(B) out fall sewer
		(C) main sewers
		(D) lateral sewers
	1.42	
	142	The treatment unit which works on put. faction alone (i.e. ancerobic decomposition) is
CS.	>	(A) contact beds
		(B) septic tanks
C		(C) oxidation ponds
		(D) tricking filters
		(2) themis mens
	143.	When the temperature is more the dissolved oxygen contact (D.O.) of sewage gets
		(A) reduced
		(E) una fected
		(C) rinanced
		(D) enhanced in 4 the 2 reduced
		, G)
	144.	For a crit channel, if the recommended flow velocity is 0.25 m/s, and the detention period
	177.	is 1 min. 'e, then the length of tank is
		is a finite c, then the length of tank is
		(F) 15 m
		(B) 25 m
		(C) 240 m
		(D) 0.25 m
	145.	The secondary treatment of the sewage is caused by
		(A) bacteria
		(B) algae
		(C) coagulant(D) gravitational pull
		(D) gravitational pull

146.	Elutriation is a process of
	(A) sludge digestion
	(B) filtration
	(C) sedimentation
	(D) washing digested sludge
147.	"Symbiosis" the beneficial association between algae and bacter, is used for treatment of
	waste water in the
	(A)4(A)1-1
	(A) activated sludge process
	(B) rotating biological contactors
	(C) anaerobic digester
	(D) oxidation pond
. (
148	The detention time in a septic tank is us. ally
15h	(A) $1-2$ hours
	(B) $5-6$ hours
	(C) $18-24$ hours
	(D) 22 – 24 hours
	C_{λ}
149.	The type of valve which allows water to flow in one direction but prevents its flow in the
117.	reverse di ection is
	Tevers out. Setto): Is
	(A\ refl\.x\valve
	(B) wir relief valve
	(C) drain valve
	(D) scour vive
	150
150.	The ven lation of sewers is needed to avoid the
	(F) cevelopment of explosive mixtures of sewer gas
	(B) build up of odourous gas
	(C) danger of asphyxiation of sewer maintenance employees
	(D) aerobic decomposition of organic materials
	CUSATICOMA

ENGINEERING SCIENCE - ANSWER KEY

TEST CODE: 607

QN. NO.	KEY								
1	В	26	A	51	В	76	A	101	В
2	С	27	A	52	В	77	A	102	D
3	В	28	A	53	В	78	C	103	C
4	A	29	C	54	В	75	A	104	A
5	В	30	D	55	D	80	C	105	A
6	D	31	A	56	C	81	C	106	В
7	A	32	C	57	B	8.2	Α	107	C
8	A	33	D	58	В	83	A	108	D
9	В	34	D	59	C	84	C	109	В
10	A	35	В	60	A	85	D	110	В
11	С	36	В	61	C	86	C	111	В
12	В	37	D	/52	C	87	A	112	C
13	C	38	C	63	()	88	В	113	A
14	A	39	C	64	C	89	В	114	В
15	С	40	C	65	C	90	В	115	D
16	A	41	A	50	В	91	C	116	C
17	D	42	В	67	D	92	A	117	D
18	С	43	В	68	С	93	D	118	A
19	С	44	C	69	D	94	В	119	D
20	В	45	Ь	70	В	95	C	120	A
21	В	46	3	71	D 🔊	96	A	121	В
22	D	47	C	72	В	97	C	122	D
23	С	48	D	73	A	98	D	123	C
24	C	49	D	74	В	99	A	124	A
25	В	50	В	75	C	100	C	125	A

	1
QN. NO.	KEY
126	С
127	D
128	С
129	В
130	В
131	A
132	В
133	D
134	C
135	D
136	В
137	C
138	D
139	В
140	В
141	A
142	В
143	A
144	A
145	A
146	A D D
147	D
148	D
149	A
150	С

CUSATICOMMON ADMISSION THEST 2019 CUSHI COMMON ADMISSION III. 2019