ENGLISH

(Final)

Direction (Qn. Nos. 1 - **10):** Fill in the blanks with the correct answer selected from the choice given below:

1.	Neena as well as Sheela beautiful poems.			
	(A)	writes	(B)	write
	` /	have written	(D)	are writing
2.	My chil	dren with their pet dog run	ning a	race now.
	(A)	is	(B)	are
	(C)	was	(D)	had been
3.	She	a film when I went to see her.		
	(A)	watched	(B)	was watching
	(C)	is watching	(D)	has been watching
4.	I	B.A. degree exam in the year 201	14.	
	(A)	have passed	(B)	did pass
		had passed	(D)	passed
5.	The girl	danced so beautifully was	great	ly applauded.
	(A)	which	(B)	that
	(C)	who	(D)	Whom
6.	College	days are some of the most excitir	ng tim	es young travel enthusiasts.
	(A)	to	(B)	in
	` /	about	(D)	for
7.	We live	an age of myriad uncertain	nties.	
	(A)	at	(B)	by
	(C)	in	(D)	of
8.	The dro	ught situation cannot be tackled		the government alone.
	(A)	with	(B)	by
	(C)	on	(D)	at

9. Preparations are for implementing the new service rules from next mont		ew service rules from next month.			
	(A) (C)	off at	(B) (D)	about on	
10.	Your v	isit is pleasant surp	rise for me.		
	(A) (C)	the an	(B) (D)	a in	
	Directi	on (Qn. Nos. 11 – 13): Se	elect the corre	ect question tag for the following:	
11.	She wo	uld have helped him,	?		
	(A) (C)	haven't she has she	(B) (D)	didn't she wouldn't she	
12.	They lo	oved him,?			
	(A) (C)	didn't they have they	(B) (D)	did they were they	
13.	He wal	ks fast,?			
	(A) (C)	don't he doesn't he	(B) (D)	did he will he	
	Directi followi		: Select the	correct form of passive voice for	the
14.	Who c	leaned out the Aegean Sta	ble?		
	(A) (B) (C) (D)	The Aegean Stable was By whom was the Aegea By whom had been the Aegea By whom can be the Aeg	an Stable clea Aegean Stable	ned out? e cleaned out?	
15.	Are you	a enjoying the film?			
	(A) (B) (C) (D)	Is the film enjoyed by you Has the film been enjoyed Is the film being enjoyed Was the film enjoyed by	ed by you? I by you?		
16.	Does sl	ne like children?			
	(A) (B) (C) (D)	Are children liked by he Is children liked by her? Have children been liked Has children been liked	d by her?		

Direction (Qn. Nos. 17 – 20): Choose the word which is most similar in meaning to the word given below:

17	41a C4
1/.	thrift

- (A) thrill(B) theft(C) care in the use of money(D) gift
- 18. quadruped
 - (A) lame person(B) foolish fellow(C) four legged table(D) four-footed animal
- 19. conceal
 - (A) steal(B) put down(C) hide(D) press
- 20. ringlet
 - (A) small ring(B) small curl of hair(C) small book(D) small flower

MATHEMATICS

21 to 70.

	up twice is equal to	
	(A) $\frac{12!}{6!6!6^{12}}$ (C) $\frac{12!}{2^66^{12}}$	(B) $\frac{2^{12}}{2^6 6^{12}}$ (D) $\frac{12!}{6^2 6^{12}}$
3.	The area of the region bound	led by the curves $y = x^2$ and $x = y^2$ is
	(A) $\frac{1}{3}$ (C) $\frac{1}{4}$	(B) $\frac{1}{2}$ (D) 3
4.	•	n knows that his friend has 2 children and 1 of at a child is equally likely to be a boy or a girl, other child is a girl, is
	(A) $\frac{1}{3}$ (C) $\frac{2}{9}$	(B) $\frac{1}{2}$ (D) 2
5.		des of the triangle opposite to the angles A, B, C of $a^3 \sin(A) + b^3 \sin(B) + c^3 \sin(C)$ is equal to
	(A) 0 (C) 3	(B) 1 (D) 2

1

1. Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels,

(B) 25100

(D) 25200

2. A fair six-faced die is rolled 12 times. The probability that each face turns

is

(A) 24800

(C) 25400

	(A) $\frac{2355}{999}$ (C) $\frac{2355}{1111}$	(B) $\frac{2355}{1000}$ (D) $\frac{2355}{1001}$	
7.		ace diagonals of cuboid (rectangular parallelepip 1. Then the length of the main diagonal which pers is	
	(A) 49	(B) $49\sqrt{2}$	
	(C) 60	(D) $60\sqrt{2}$	
8.	The square root of (A) 1 (C) 3	$\frac{(0.75)^3}{1-0.75} + 0.75 + (0.75)^2 + 1$ is (B) 2 (D) 4	
9.	The real roots of the	equation $7^{\log_7(x^2-4x+5)} = x - 1$ are	
	(A) 1 and 2	(B) 2 and 3	
	(C) 3 and 4	(D) 4 and 5	
10.	If $(x-1)^3$ is a factor (A) $x-3$ (C) $x+2$	or of $x^4 + ax^3 + bx^2 + cx - 1$, then the other factor (B) $x + 1$ (D) $x - 2$	tor is

11. At any instant of time the sum of the two angles formed by the hour and minute rounds of a clock is 360° . Then the difference between the two angles formed at time 6.15 is

(A) 165

6. The value of $2.\overline{357}$ is

(B) 170

(C) 175

(D) 145

12.	Let t_n denote the n^{th} term. Then $\lim_{n\to\infty} t_n$ is	of the infinite series $\frac{1}{1!} + \frac{10}{2!} + \frac{21}{3!} + \frac{34}{4!} + \frac{49}{5!} + \dots$
	(A) e	(B) 0
	(C) e^2	(D) 1
13.	The smallest positive root o	of the equation $\tan x - x = 0$ lies in
	(A) $(0, \frac{\pi}{2})$ (B) $(\pi, \frac{\pi}{2})$ (C) $(\pi, \frac{3\pi}{2})$ (D) $(\frac{3\pi}{2}, \frac{3\pi}{2})$)
14.	If $x^{2/3} - 7x^{1/3} + 10 = 0$, the	en the value of x is in the set
	(A) {125}(C) φ	(B) {8} (D) {125,8}
15.	The cosine of the angle bety	ween any two diagonals of a cube is
	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$
	(C) $\frac{1}{3}$	(D) $\frac{1}{\sqrt{3}}$
16.	The value of $\sum_{n=1}^{13} (i^n + i^{n+1})^n$	1), $i = \sqrt{-1}$, is
		(B) $i - 1$
	(A) <i>i</i> (C) 0	(D) $t - 1$ (D) -1
17.	The number of ways of distant none of the boxes is en	tributing 8 identical balls in 3 distinct boxes, so apty, is

(B) 21

(D) ${}^{8}C_{3}$

(A) 5

(C) 3^8

20.	Standard Deviation of n observated deviation of the observate	ervations $a_1, a_2, a_3, \ldots, a_n$ is σ . Then the stanions $\lambda a_1, \lambda a_2, \ldots, \lambda a_n$ is
	(A) $\lambda \sigma$ (C) $ \lambda \sigma$	(B) $-\lambda \sigma$ (D) $\lambda^n \sigma$
21.	The equation $x^3 - yx^2 + x - y$	y = 0 represents
	(A) a hyperbola and two strais(B) a straight line(C) a parabola and two straight(D) a straight line and a circle	ht lines
22.	In a triangle ABC if $\sin A \sin A$	$aB = \frac{ab}{c^2}$, then the triangle is
	(A) equilateral	(B) isosceles
	(C) right angled	(D) obtuse angled
23.	The smallest value of $5\cos\theta$ +	- 12 is
	(A) 5	(B) 7
	(C) 17	(D) 12

4

18. In a triangle the vertices are (2,3) and (4,0) and its circumcenter is at (2,z)

(B) $\sqrt{5}$ (D) $\frac{13}{6}$

19. The area bounded by the parabolas $y = x^2$ and $y = 1 - x^2$ is

(B) $\frac{2\sqrt{2}}{3}$ (D) $\frac{2}{3}$

for some real number z. Then the circum radius is

(A) $\frac{6}{2+\sqrt{13}}$ (C) 2

(A) $\frac{\sqrt{2}}{3}$ (C) $\frac{1}{3}$

- 24. If $C=2\cos\theta$, then the value of the determinant $\Delta=\begin{vmatrix} C&1&0\\ 1&C&1\\ 6&1&C \end{vmatrix}$ is
 - (A) $\frac{2\sin^2 2\theta}{\sin \theta}$ (B) $8\cos^3 \theta 4\cos \theta + 6$ (C) $\frac{2\sin 2\theta}{\sin \theta}$ (D) $8\cos^3 \theta + 4\cos \theta + 6$
- 25. The distance covered by a particle in t seconds is given by $x = 3 + 8t 4t^2$. After 1 second velocity will be
 - (A) 0 unit/second

(B) 3 unit/second

(C) 1 unit/second

- (D) 7 unit/second
- 26. The conjugate of a complex number is $\frac{1}{i-1}$. Then that complex number is
 - (A) $\frac{-1}{i-1}$

(B) $\frac{1}{i+1}$

(C) $\frac{-1}{i+1}$

- (D) $\frac{1}{i-1}$
- 27. The equation whose roots are twice the roots of $2x^2 5x + 2 = 0$ is
 - (A) $4x^2 10x + 4 = 0$
- (B) $x^2 5x/2 + 1 = 0$ (D) $x^2 5x + 4 = 0$
- (C) $8x^2 10x + 2 = 0$

- 28. If $x^2 + y^2 = 1$ x, y > 0, then the maximum value of x + y is
 - (A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) $\sqrt{2}$

(D) 2

30.	For regular polygon of 6 significant polygon of 6 significant vertices	des, the number of triangles whose vertices are s of the polygon is
	(A) 12 (C) 4	(B) 6 (D) 2
31.	The remainder obtained whe	en $1! + 2! + \dots + 95!$ is divided by 10 is
	(A) 2 (C) 1	(B) 3 (D) 4
32.	If the system of equations 3a has infinite number of solutions	x - 2y + z = 0, kx - 14y + 15z = 0, x + 2y + 3z = 0 ons, then $k =$
	(A) $\frac{1}{8}$ (C) 29	(B) $\frac{7}{8}$ (D) 27
33.	If A is an $n \times n$ non-sing $det(3A^{-1}BA)$ is	The full rular matrix and B is any $n \times n$ matrix, then
	(A) $3 \det(B)$ (C) $\det(B)$	(B) $3^n \det(B)$ (D) $3^n \det(A)$
34.	Let A, B, C be $n \times n$ matrice rank(A^2BC) is	es, A and B being non-singular and C singular,
	$ \begin{aligned} (A) &= n \\ (C) &< n \end{aligned} $	(B) $= n - 1$ (D) $= n - 2$

6

(B) 0 (D) $-(a-b)^2/4$

29. The minimum value of (x-a)(x-b) is

(A) ab(C) $(a-b)^2/4$

35.		uch that $P(A) = p$, $P(B) = q$ and $P(A \cap B) = q$
	r. Then the probability that	A occurs but B does not is
	(A) $p-r$ (C) $p-qr$	(B) $p-q$ (D) $p-pq$
36.		robability $\frac{1}{2}$ and B can solve the problem with bility that the problem will be solved is
	(A) $\frac{1}{2}$ (C) $\frac{3}{4}$	(B) $\frac{1}{3}$ (D) $\frac{2}{3}$
37.	Let f be a function defined $f(12) = 24$ and $f(8) = 15$, the	f(xy) = f(x) + f(y) for all integers x, y . If we value of $f(48)$ is
	(A) 31 (C) 33	(B) 32 (D) 34
38.	The period of the function $f($	$f(x) = 3\sin(2x+1)$ in radians is
	(A) 2π	(B) π
	(C) $\frac{\pi}{2}$	(D) $-\pi$
39.	The triangle whose vertices ar	the points $(1,2)$, $(2,3)$, $(4,7)$ is
	(A) right angled(C) acute angled	(B) abuse angled(D) equilateral
40.	The diagonals of a parallelogr $6x - 2y = 7$. Then the parallelogr	cam ABCD are along the lines $x + 3y = 4$ and elogram ABCD must be a
	(A) rectangle	(B) trapezium
	(C) cyclic quadrilateral	(D) rhombus

41.	If the circles $x^2 + y^2 = 1$ a externally, then the value of		$x^2 - 8x - 6y + c = 0$ touch each other
	(A) 9 (C) 8	(B) 6 (D) 0	
42.	The equation of the common $x^2 + y^2 - 4y = 0$ is	on chord o	of the circles $x^2 + y^2 - 6x = 0$ and
	(A) $3x + 2y + 1 = 0$ (C) $3x + 2y = 0$		(B) $3x - 2y = 0$ (D) $3x - 2y - 1 = 0$
43.	The length of tangent from	(5,1) to the	e circle $x^2 + y^2 + 6x - 4y - 3 = 0$ is
	(A) 81 (C) 7	(B) 49 (D) 21	
44.	If two vectors a and b are $a.b =$	such that	$ a = 2$, $ b = 5$ and $ a \times b = 8$, then
	(A) 2 (C) 6	(B) 4 (D) 8	
45.	If a and b are vectors such	that $ a+b $	b = a - b , then
	(A) they are parallel(C) they are of equal magnitude		(B) they are perpendicular (D) they are same
46.	Let A be a set containing containing 3 elements is	10 element	s. Then the number of subsets of A
	(A) 30 (C) 120	(B) 60 (D) 1200	

47.	(A) 1	$\lim_{x\to 0} \frac{ x }{x}$ is	(B)	
	(C) 0		(D)	not defined
40		f() s	u2 ·	
48.	The function	f(x) = x - 3	5 1S	

- - (A) continuous and differentiable
 - (B) continuous but not differentiable
 - (C) not continuous but differentiable
 - (D) neither continuous nor differentiable
- 49. The area bounded by the curve |x| + |y| = 1 is
 - (A) $\frac{1}{2}$ (B) 2 (D) $\frac{1}{4}$ (C) 1
- 50. A car travels from $\,P\,$ to $\,Q\,$ at 30 kilometers per hour and returns from $\,Q\,$ to P at 20 kilometers per hour by the same route. Its average speed in kilometers per hour is
 - (A) 25(B) 30 (D) $10\sqrt{6}$ (C) 24

ENGINEERING MECHANICS

71.	The resultant of two forces P and Q inclined at an angle θ will be inclined at following
	angle with respect to P

(A)
$$\frac{\theta}{2}$$

(B)
$$\tan^{-1} \left[\frac{Q \cdot \sin \theta}{(P + Q \cdot \cos \theta)} \right]$$

(C)
$$\tan^{-1} \left[\frac{P \cdot \sin \theta}{(Q + P \cdot \cos \theta)} \right]$$

(C)
$$\tan^{-1} \left[\frac{P \cdot \sin \theta}{(Q + P \cdot \cos \theta)} \right]$$
 (D) $\tan^{-1} \left[\frac{Q \cdot \cos \theta}{(Q + P \cdot \sin \theta)} \right]$

72. The unit of mass moment of inertia is

(B)
$$m^4$$

$$(C)$$
 kg/m²

73. A rope is wrapped twice around a rough pole with a coefficient of friction μ . It is subjected to a force F₁ at one end. A gradually increasing force F₂ is applied at the other end till the rope just starts slipping. At this instant the ratio of F2 to F1 is

(B)
$$e^{4\pi\mu}$$

$$(C)$$
 $e^{2\mu}$

(B)
$$e^{4\pi\mu}$$
 (D) $e^{360\mu}$

74. The centre of gravity of a solid hemisphere lies on the central radius

- (A) at distance 3r/2 from the plane base
- (B) at distance 3r/4 from the plane base
- (C) at distance 3r/5 from the plane base
- (D) at distance 3r/8 from the plane base

75. According to theorem of perpendicular axes, if Ixx and Iyy be the moment of inertia of a lamina about xx and yy axes, then moment of inertia about axis zz, which is perpendicular to xx and yy, equal to

(A)
$$I_{xx} + I_{yy}$$

(B)
$$I_{xx} \times I_{yy}$$

(D) I_{yy} / I_{xx}

(C)
$$I_{xx}/I_{yy}$$

(D)
$$I_{yy}/I_{xx}$$

Moment of inertia of a circular area, whose diameter is d, about an axis perpendicular 76. to the area, passing though its centre is given by

(A)
$$\pi d^4/64$$

(B)
$$\pi d^4/32$$

(C)
$$\pi d^4/12$$

(D)
$$\pi d^4/16$$

77. Moment of inertia of a hollow circular cross section (inside diameter d and outside diameter D) about horizontal axis is

(A)
$$\pi(D^4-d^4)/16$$

(B)
$$\pi(D^3-d^3)/16$$

	(C)	$\pi(D^4-d^4)/32$	(D)	$\pi(D^4-d^4)/64$
78.		lar disc of weight W rolls down as is F, then the total net force on the		ined plane of inclination θ . If the force of parallel to the plane is equal to
		$W - F \sin\theta$ $W \cos\theta - F$		$W \sin \theta - F$ $W \tan \theta - F$
79.	When a by	a body slides down an inclined su	rface,	the acceleration f of the body is given
	(A) (C)	$ f = g f = g. \cos\theta $	(B) (D)	$f = g. \sin\theta$ $f = g. \tan\theta$
80.		cle while sliding down a smooth p 6 m/s. The inclination of plane is	lane c	of 19.86 √2 m length acquires a velocity
	(A) (C)		(B) (D)	45° 75°
81.	One Ne	ewton is equal to		
		10^7 dyne 10^4 dyne		10 ⁵ dyne 10 ³ dyne
82.	and the		oaratio	vo moving bodies in the same direction on are v_1 and v_2 then, as per Newton's restitution e is given by
		$(v_1 - v_2)/(u_1 - u_2)$ $(v_2 - v_1)/(u_1 - u_2)$		$(u_2-u_1)/(v_1-v_2)$ $(v_1-v_2)/(u_2-u_1)$
83.	Momen	tum is defined as		
	(A) (C)	force × distance mass×time	(B) (D)	mass × acceleration mass × velocity
84.	Which	of the following have same units?		
	(A) (C)	Momentum and impulse Work and kinetic energy	(B) (D)	Stress and pressure All of the above
85.		ace equal to 1 m, the coefficient o		5 m on a smooth floor attains the height tution between the ball and the floor is
	(A) (C)	0.25 0.67	(B) (D)	0.5 0.33

86.

If a particle moves along a circumference of a circle of radius r with a uniform

	angular velocity ω radians/s, the equation for the velocity of the particle is given by			
	(A) $v = \omega \sqrt{(y^2 - r^2)}$ (B) $v = \omega \sqrt{(y - r)}$ (C) $v = \omega \sqrt{(r^2 - y^2)}$ (D) $v = \omega \sqrt{(r^2 + y^2)}$			
87.	A stone falls from the top of a building 200 m high and at the same time another is projected vertically upwards with a velocity of 50 m/s, then the two will meet			
	(A) after 1 second (B) after 2 seconds (C) after 4 seconds (D) after 5 seconds			
88.	A rubber ball is dropped from a height of 2 metres. To what height will it rise if there is no loss of velocity after rebounding?			
	(A) 4 m (C) 2 m (B) 3 m (D) 1 m			
89.	When a body falls freely under gravitational force, it possesses			
	 (A) maximum weight (B) minimum weight (C) no weight (D) a weight depending upon the velocity 			
90.	A jet engine works on the principle of			
	 (A) conservation of energy (B) conservation of linear momentum (C) earth's gravity (D) gravitational energy 			
91.	Horizontal range of a projectile fired with initial velocity \boldsymbol{u} at angle $\boldsymbol{\alpha}$ to horizontal is equal to			
	(A) $(u^2 \sin 2\alpha)/g$ (B) $(u^2 \cos 2\alpha)/g$ (C) $(u^2 \sin \alpha)/g$ (D) $(u^2 \sin^2 \alpha)/g$			
92.	The resultant of two equal and mutually perpendicular forces of magnitude, 'F' each is			
	(A) $2F$ (B) $\sqrt{2 \times F}$ (C) $\sqrt{2} \times F$ (D) F^2			
93.	A force of magnitude 100 kN acts 240° inclined anticlockwise to the positive direction of the x-axis. Its components along the x and y axes are			
	(A) -50 kN and -86.6 kN (C) 50 kN and 86.6 kN (D) 50 kN and -86.6 kN (D) -50 and 86.6 Kn			

94.	A vec	tor is a quantity having		
	(A) (C)	magnitude magnitude and direction	(B) (D)	direction none of the above
95.		noment of the resultant of a force system of the moments of the components of a s		
	(A) (C)	Newton's law Pascal's law	(B) (D)	D'Alembert's principle Varignon's theorem
96.	The co	o-efficient of static friction is	co-e	fficient of kinetic friction.
	(A) (C)	more than equal to	(B) (D)	less than equal to or less than
97.	The se	econd moment of an area about any a	xis is	
	(A) (C)	always positive either positive or negative	(B) (D)	always negative zero
98.	For pe	erfectly smooth surfaces in contact, th	e angle	of friction is
	(A) (C)	90° 0°	(B) (D)	60° 45°
99.	The fo	orce required to produce unit deflection	n is kno	own as
	(A) (C)	flexibility surface force	(B) (D)	stiffness body force
100.		quation of motion of a particle is give article after 2 seconds is	n as <i>x</i> =	$= 2t^3 - t^2 - 1$. The acceleration of
	(A) (C)	12 m/s ² 24 m/s ²	(B) (D)	$22 \ m/s^2$ $10 \ m/s^2$
101.	The a	cceleration of a particle moving in a c	ircle wi	ith a constant speed is
	(A) (B) (C) (D)	zero directed along the tangent to the pat always a variable directed towards the centre of the ci		
102.		all is thrown at an angle of 45° with the ontal range and vertical height attained		ontal direction, the ratio between its
	(A) (C)	4:1 1:4	(B) (D)	2:1 1:2

When the mass of a body is doubled and the acceleration is halved, the force acting on the body			
(A) (C)	remains unchanged becomes four times the previous	(B) (D)	is doubled becomes half of the previous
	•	ement i	is perpendicular to the line of action
(A) (C)	positive positive or negative	(B) (D)	negative zero
	•	uniform	velocity of 90 km/hr. The force
(A) (C)	0.5 kN 50 kN	(B) (D)	5 kN 500 kN
		cinetic o	energy of a particle having a linear
(A)	$\frac{v}{2}$	(B)	$\frac{2}{v}$
(C)	$\frac{2}{v^2}$	(D)	$\frac{v^2}{2}$
		with equ	ual linear momenta. The ratio of the
(A) (C)	1:1 2.5:1	(B) (D)	2:1 5:1
To do	puble the period of a simple pendulum	, its len	gth must be
(A) (C)	doubled halved	(B) (D)	increased four times reduced to one-fourth
Kinetic energy of a body undergoing rotation with respect to a fixed axis is $(m - \text{mass}, I - \text{moment of inertia with respect to rotating axis}, v - \text{velocity along tangent to the path}, \omega - \text{angular velocity})$			
(A)	$\frac{mv^2}{2}$	(B)	$\frac{m\omega^2}{2}$
(C)	$\frac{Iv^2}{2}$	(D)	$\frac{I\omega^2}{2}$
	the box (A) (C) The volume (A) (C) A box require (A) (C) The reloce (A) (C) Two remains (A) (C) To do (A) (C) Kinet I - m path, (A)	the body (A) remains unchanged (C) becomes four times the previous The work done by a force when the displace of the force is (A) positive (C) positive or negative A body of mass 300 kg moves with a required to stop it in 15 seconds is (A) 0.5 kN (C) 50 kN The ratio between linear momentum and by velocity of 'v' is (A) $\frac{v}{2}$ (C) $\frac{2}{v^2}$ Two masses of 2 kg and 5 kg are moving was magnitudes of their kinetic energies is (A) 1:1 (C) 2.5:1 To double the period of a simple pendulum (A) doubled (C) halved Kinetic energy of a body undergoing rotation $I - \text{moment of inertia with respect to rotation path, } \omega - \text{angular velocity}$ (A) $\frac{mv^2}{2}$	the body (A) remains unchanged (B) (C) becomes four times the previous (D) The work done by a force when the displacement of the force is (A) positive (B) (C) positive or negative (D) A body of mass 300 kg moves with a uniform required to stop it in 15 seconds is (A) 0.5 kN (B) (C) 50 kN (D) The ratio between linear momentum and kinetic evolution of 'v' is (A) $\frac{v}{2}$ (B) (C) $\frac{2}{v^2}$ (D) Two masses of 2 kg and 5 kg are moving with equal magnitudes of their kinetic energies is (A) 1:1 (B) (C) 2.5:1 (D) To double the period of a simple pendulum, its lens (A) doubled (C) halved (D) Kinetic energy of a body undergoing rotation with $I-$ moment of inertia with respect to rotating axis path, ω – angular velocity) (A) $\frac{mv^2}{2}$ (B)

110.		presents rpm (rotations per minu y in radians/second, then	ite) o	f a	body in rotation and ω its angular
	(A)	$n = \frac{2\pi\omega}{60}$	(1	B)	$\omega = \frac{2\pi}{60n}$
	(C)	$\omega = \frac{60}{2\pi n}$	(1	D)	$n = \frac{60\omega}{2\pi}$
		ENGINEERING	GR/	Α PI	HICS
111.	A draft	er helps in drawing			
	(B) (C)	parallel and Perpendicular lines concentric circles smooth curves All of the above			
112.	Centre	lines are drawn as			
	(B) (C)	continuous narrow lines dashed narrow lines long dashed dotted narrow lines long dashed double dotted lines			
113.	For dra	wing the components of a wrist w	atch,	the	scale used is
		reducing scale enlarging scale	` /		all scale any of the above
114.	Which	of the following scale is used for	conve	ertir	ng miles into kilometers?
		diagonal scale vernier scale			omparative scale etrograde Vernier scale
115.	The RF	of a scale is always			
	(A) (C)	less than 1 equal to 1	(B) (D)		reater than 1 .ny of the above
116.	When a	a bullet is shot in the air, the path	raver	sed	by the bullet is
	(A) (C)	cycloid hyperbola	(B) (D)		arabola emicircle
117.	The ang	gle between the asymptotes of a re	ectang	gula	r hyperbolas is
	(A) (C)	30° 60°	(B) (D)	45 90	

118.		he curve traced out by a point on circle of larger diameter	the c	ircumference of a circle which rolls on
	(A) (C)	epicycloid spiral	(B) (D)	involute atrococycloid
119.	An invo	plute curve is used in		
	(A) (C)	chains cams	(B) (D)	gears pulleys
120.	In first	angle projection, the right hand si	de vie	w of the object is drawn
	(A) (C)	above the elevation below the elevation	\ /	left of the elevation right of the elevation
121.	In ortho	ographic projection, BIS recomme	nds th	ne following projection
	(A) (C)	first angle projection second angle projection	(B) (D)	third angle projection fourth angle projection
122.	If the a	pparent and the true inclinations o	f a lin	e with HP are equal, the line is
	(A) (B) (C) (D)	parallel to horizontal plane parallel to vertical plane parallel to profile plane inclined to both reference planes		
123.	The poi	nt at which the line intersects the	VP, e	xtended if necessary is known as
	(A) (C)	profile trace vertical trace	(B) (D)	horizontal trace auxiliary trace
124.	If the fr	ont view of a line is parallel to the	e xy li	ne, its true length is shown in
	(A) (C)	front view side view	(B) (D)	top view Both front and top views
125.	The ort	hographic view of a hemisphere n	nay ap	ppear as
	(A) (C)	circle parabola	(B) (D)	ellipse hyperbola
126.	A cube will app	e e	d diag	gonal perpendicular to it. The top view
	(A) (C)	square rhombus	(B) (D)	rectangle hexagon

127.	If a pol made u		ne, the	true shape of section is a closed figure
	(A) (C)	straight lines combination of lines and curves	(E (E	3) curves 2) Any of the above
128.		re pyramid is resting on its base. It is cut by an AIP. Its true shape		HP and with a side of base parallel to
	(A) (C)	*		rectangle parallelogram
129.	When t	wo prisms intersect at right angle,	the cu	urve of intersection is made up of
		circular arc curved line	(B) (D)	elliptical arc straight line
130.	The cui	rve of intersection of any solid wit	h a lir	ne is
	(A) (C)	a point a closed loop	(B) (D)	a line None of the above
131.	The pro	ojectors in isometric view are		
	(B) (C)	converging diverging parallel to plane of projection perpendicular to plane of project	ion	
132.	A squar	re in a regular multi view projection	on app	ears in an isometric view as
	(A) (C)	Box Parallelogram	(B) (D)	Square Rhombus
133.	The ang	gle that the isometric lines make w	ith ea	ch other is
	(A) (C)	45° 90°	(B) (D)	60° 120°
134.	In com	parison to an isometric projection,	the a	ppearance of an isometric view is
	(A) (C)	larger more accurate	(B) (D)	smaller more realistic
135.	As the view	distance of the object from the o	bserv	er increases, its size in the perspective
	(A) (C)	remains constant decreases	(B) (D)	increases Any of the above

136.	The line joining any point on the object to the station point is known as			
	(A) (C)	axis of vision center line	(B) (D)	visual ray horizon line
137.	Pictoria	al views are obtained by		
		isometric projection perspective projection	(B) (D)	oblique projection All of the above
138.	The nui	mber of points needed to draw a li	ne us	ing absolute coordinates is
	(A) (C)	none two	(B) (D)	one four
139.	The geo	ometrical name of the curvature of	f the c	oil used in spiral binding is
	(A) (C)	archimedean spiral involute		logarithmic spiral None of the above
140.		mber of stages that are necessa its axis inclined to both the refere		get the orthographic views of a solid anes is
	(A) (C)	one three	(B) (D)	two four
141.	When a	line is parallel to both HP and V	P	
	(A) (B) (C) (D)	side view give true length only top view give true length only front view give true length both front and top views give tru	ıe lenş	gth
142.	When a	tetrahedron is suspended on a str	ing tie	ed at a corner, its top view will be a
	(A) (C)	square rhombus	(B) (D)	triangle isosceles triange
143.	To get t	the true shape as the biggest possi	ble tri	angle when a cone is cut
	(A) (B) (C) (D)	cutting plane should cut the base cutting plane should pass throug cutting plane should be parallel cutting plane should contain the	h the to end	

144.	When a	solid is cut by a plane perpendicu	ılar to	both HP and VP
	(A) (B) (C) (D)	no sectional view will give true sectional elevation will give true sectional plan will give true shap sectional side view will give true	shape of s	e of section section
145.	Horizon	n plane in perspective projection is	8	
	(A) (B) (C) (D)	a plane passing through the axis a plane passing through the eye p a plane passing through the eye p a plane passing through the horiz	oaralle perper	el to ground plane ndicular to ground plane
146.				of the cylinder which is standing on its ne perspective view of the top circular
	(A) (B) (C) (D)	A plane A point An ellipse which is fully visible An ellipse which is partially visi	ble	
147.	The per	spective view of an object become	es lar	ger than the actual size if
	(A) (B) (C) (D)	height of observer > height of obdistance of observer from PP > h PP in between object and observer object in between PP and observer object.	eight er	of observer
148.	Isometr	ic projection of a sphere with radi	us "R	" is
	(A) (C)	an ellipse with major axis 2R a circle of radius R	(B) (D)	an ellipse with major axis R a circle of radius (R×0.816)
149.	What is	meant by diameter of an ellipse?		
	(A) (B) (C) (D)	Major axis Line with end points on the curv Distance between two foci (Major axis + minor axis) / 2	e, pas	sing through the centre
150.	The cur	ve satisfying Boyle's Law is a		
	(A) (C)	rectangular hyperbola cycloid	(B) (D)	parabola hyperbola

GENERAL ENGINEERING

151.	The ma	in constituent of Portland cement	is	
		lime iron oxide	(B) (D)	
152.	` ′	n is added in the manufacture of l	, ,	Č
132.	Сурзиі	ii is added iii the mandracture or i	Ortian	id Cement in order to
		shorten the setting time of ceme		
		lengthen the setting time of cem	ent	
		decrease burning temperature decrease the grinding time		
153.	In RC	C construction, the maximum siz	e of co	parse aggregate is limited to
	` /	10 mm	(B)	15 mm
	(C)	20 mm	(D)	25 mm
154.	When t	wo or more footings are connected	d by a	beam, it is called
	(A)	beam footing	(B)	combined footing
	(C)	strap footing	(D)	_
155.	The bri	ck laid with its length parallel to	the fac	e of the wall is called as
	(A)	course	(B)	stretcher
	(C)	header	(D)	closer
156.	In singl	y reinforced beams, steel reinforced	ement	t is provided in
	(A)	tensile zone		
	` /	compressive zone		
		both tensile and compressive zo	ne	
	(D)	neutral zone		
157.	The mo	dular ratio is the ratio of		
	(A)	Young's Modulus of steel to Yo	oung's	Modulus of concrete
	(B)	Young's Modulus of concrete to		•
	(C)	Load carried by concrete Load of	carried	by steel
	(D)	None of the above		
158.	The rep	presentative fraction of 1/2500 me	ans th	at the scale is
	(A)	1 cm = 2.5 m	(B)	1 cm = 15 m
	(C)	1 cm = 25 m	(D)	1 cm = 2.5 km

159.	The method of surveying used for determining the relative heights of points on the surface of earth is called			
		levelling longitudinal levelling	(B) (D)	-
160.	The co	ntour lines can cross one another	on maj	p only in case of
	(A) (C)	vertical cliff saddle	(B) (D)	8 8
161.	•	e consisting of one constant press ses is known as	sure, c	one constant volume and two isentropic
	(A) (C)	•	(B) (D)	Stirling cycle Diesel cycle
162.	An adia	abatic process is one in which		
	(A) (B) (C) (D)	the change in internal energy is		to the mechanical work done
163.	Heat ar	nd Work are		
	` /	Point function Extensive property	(B) (D)	Path function Intensive property
164.	The bas	sis for measuring thermodynamic	prope	rty of temperature is given by
	(A) (B) (C) (D)	Avogadro's hypothesis		
165.	For rev	ersible adiabatic process the chan	ge in 6	entropy is
	(A) (C)	Maximum Zero	(B) (D)	Minimum Negative
166.	In com	pression ignition (CI) engine, the	compi	ression ratio is
	(A) (B) (C) (D)	Swept volume / Cylinder volume Clearance volume / Cylinder volume	e lume	

167.	In two stroke engine there is one power stroke in of crankshaft rotation.			
	(A) (C)	90° 270°	(B) (D)	180° 360°
168.	The co	mpression ratio in a Compression	Igniti	on (CI) engine is generally in between
	` ′	8 to 13 20 to 28	(B) (D)	14 to 23 25 to 32
169.	Superhe	eating of steam is done at		
	\ /	Constant Volume Constant Pressure	(B) (D)	1.7
170.	While s	steam expands in turbines, theoretic	ically	the entropy
	` ′	remains constant decreases	\ /	increases None of the above
171.		tance consisting of a coil of wirn electric current flows through i		n an iron core and is only magnetized lled
	(A) (C)	magnet battery	(B) (D)	electromagnet coil
172.	Magnet	s nowadays are made of		
	(A) (C)	iron Both (A) and (B)	(B) (D)	steel copper
173.	Direction	on of induced emf in a circuit is in	acco	rdance with the law of
	(A) (C)	conservation of mass conservation of energy	(B) (D)	conservation of charge conservation of momentum
174.		t is higher than the previous one,		eplaced by another spring whose spring he damping ratio and natural frequency
	(A) (C)	increases, decreases decreases, decreases	(B) (D)	increases, increases decreases, increases
175.	In elect	rodynamic instruments, the operation	ting fi	eld is produced by
	(A) (C)	permanent magnet moving coil	(B) (D)	fixed coil All of the above

176.	The deflection angle in hot wire instruments is				
	(C)	 (A) directly proportional to the current (B) directly proportional to the square of current (C) inversely proportional to the current (D) inversely proportional to the square of current 			
177.	Active	e power and apparent power are respectively represented by			
	()	kW and kVAR kVA and kVAR	\ /	kVAR and kVA kW and kVA	
178.	B. Phase advancers are used for which among the following mach			ong the following machines?	
	(A) (C)	Transformer Induction motors		Synchronous machines DC machines	
179.	The number of instantaneous values between zero and the peak value is				
	(A) (C)		(B) (D)	one infinity	
180.	Which among the following condition is true at the resonance?				
		$\begin{aligned} X_c &> X_L \\ X_c &< X_L \end{aligned}$		$X_c = X_L$ None of the above	
181. A zener diode					
	(B)	has a high forward voltage ration has a sharp breakdown at low re- is useful as an amplier has a negative resistance	_	voltage	
182.	82. Under small signal operation of diode				
	(A) (B) (C) (D)	its bulk resistance increase its junction resistance predomin it acts like a closed switch it behaves as a clipper	ates		
183.	Early e	ffect in BJT refers to			
	(A) (C)	avalanche breakdown base narrowing	(B) (D)	thermal runaway zener breakdown	

184.	In a junction transistor, the collector cut off current ICBO reduces considerably b doping the				
	(A) (B) (C) (D)	collector with high level of impur	ity		
	(D)	concetor with low level of impuri	Ly		
185.	Thresho	old of a measurement system is			
	(A) (B) (C) (D)	. •	m etecto		
186.	The ele	electrical transducer is a device which converts			
	(C)	non mechanical to mechanical out mechanical to non-mechanical out non electrical to electrical output electrical to non-electrical output	-		
187.		f-wave rectifier circuit with a capacitive filter is connected to a 240 volts, 50 Hz pply. The output voltage across the capacitor should be approximately			
	(A) (C)		(B) (D)	280 volts 336 volts	
188.	The temperature being sensed by a negative temperature coefficient (NTC) thermistor				
		<u> </u>	eratı re		
189.		An FM signal with modulation index m_f is passed through a frequency Tripler. The modulation index of the output signal will be			
	(A) (C)		(B) (D)	$\begin{array}{c} 3m_f \\ 27 \ m_f \end{array}$	
190.	. In phase modulation, the frequency deviation is				
	(A) (B) (C) (D)				

191.	In which register the address of next instruction to be fetched is stored?						
	(A) (C)	memory data register memory access register	(B) (D)	memory address register program counter			
192.	Which of the following symbol is used to denote a bit wise Logical OR operator?						
	(A) (C)	! &	(B) (D)	# !!			
193.	Return statement is used						
	(B) (C)	•	unctic				
194.	A function that calls itself for its processing is known as						
	` /	Inline Function Overloaded Function	\ /	Nested Function Recursive Function			
195.	Swappi	ng					
	(A) (B) (C) (D)	works best with many small part allows many programs to use me allows each program in turn to u does not work with overlaying	emory	simultaneously			
196.		ch of the following organizations looks at standards for representation of data on nternet?					
	(A) (C)	ISOC IEEE	(B) (D)	W3C IETE			
197.	Which	Which layer in the OSI reference model takes care of routing and addressing?					
	(A) (C)	Data Link Transport	(B) (D)	Network Session			
198.	In an E-R diagram attributes are represented by						
	(A) (C)	rectangle ellipse	(B) (D)	square triangle			

- 199. The idea of cache memory is based
 - (A) on the property of locality of reference
 - (B) on the fact that references generally tend to cluster
 - (C) on the heuristic 90-10 rule
 - (D) All of the above
- 200. Which of the following 802 standard provides for a collision free protocol?

(A) 802.2

(B) 802.3

(C) 802.5

(D) 802.6
